2 resultados para Higher nervous activity

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The demand of energy, fuels and chemicals is increasing due to the strong growth of some countries in the developing world and the development of the world economy. Unfortunately, the general picture derived sparked an exponential increase in crude oil prices with a consequent increase of the chemical, by-products and energy, depleting the global market. Nowadays biomass are the most promising alternative to fossil fuels for the production of chemicals and fuels. In this work, the development of three different catalytic processes for the valorization of biomass-derived has been investigated. 5-hydroxymethylfurfural oxidation was studied under mild reaction condition using gold and gold/copper based catalysts synthetized from pre-formed nanoparticles and supported onto TiO2 and CeO2. The analysis conducted on catalysts showed the formation of alloys gold/copper and a strong synergistic effect between the two metals. For this reason the bimetallic catalysts supported on titania showed a higher catalytic activity respect to the monometallic catalysts. The process for the production of 2,5-bishydroxymethyl furan (BHMF) was also optimized by means the 5-hydroxymethylfurfural hydrogenation using the Shvo complex. Complete conversion of HMF was achieved working at 90 °C and 10 bar of hydrogen. The complex was found to be re-usable for at least three catalytic cycles without suffering any type of deactivation. Finally, the hydrogenation of furfural and HMF was carried out, developing the process of hydrogen transfer by using MgO as a catalyst and methanol as a hydrogen donor. Quantitative yields to alcohols have been achieved in a few hours working in mild condition: 160 °C and at autogenous pressure. The only by-products formed were light products such as CO, CO2 and CH4 (products derived from methanol transformation), easily separable from the reaction solution depressurizing the reactor.