7 resultados para High intensity discharge lamps
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
It is not unknown that the evolution of firm theories has been developed along a path paved by an increasing awareness of the organizational structure importance. From the early “neoclassical” conceptualizations that intended the firm as a rational actor whose aim is to produce that amount of output, given the inputs at its disposal and in accordance to technological or environmental constraints, which maximizes the revenue (see Boulding, 1942 for a past mid century state of the art discussion) to the knowledge based theory of the firm (Nonaka & Takeuchi, 1995; Nonaka & Toyama, 2005), which recognizes in the firm a knnowledge creating entity, with specific organizational capabilities (Teece, 1996; Teece & Pisano, 1998) that allow to sustaine competitive advantages. Tracing back a map of the theory of the firm evolution, taking into account the several perspectives adopted in the history of thought, would take the length of many books. Because of that a more fruitful strategy is circumscribing the focus of the description of the literature evolution to one flow connected to a crucial question about the nature of firm’s behaviour and about the determinants of competitive advantages. In so doing I adopt a perspective that allows me to consider the organizational structure of the firm as an element according to which the different theories can be discriminated. The approach adopted starts by considering the drawbacks of the standard neoclassical theory of the firm. Discussing the most influential theoretical approaches I end up with a close examination of the knowledge based perspective of the firm. Within this perspective the firm is considered as a knowledge creating entity that produce and mange knowledge (Nonaka, Toyama, & Nagata, 2000; Nonaka & Toyama, 2005). In a knowledge intensive organization, knowledge is clearly embedded for the most part in the human capital of the individuals that compose such an organization. In a knowledge based organization, the management, in order to cope with knowledge intensive productions, ought to develop and accumulate capabilities that shape the organizational forms in a way that relies on “cross-functional processes, extensive delayering and empowerment” (Foss 2005, p.12). This mechanism contributes to determine the absorptive capacity of the firm towards specific technologies and, in so doing, it also shape the technological trajectories along which the firm moves. After having recognized the growing importance of the firm’s organizational structure in the theoretical literature concerning the firm theory, the subsequent point of the analysis is that of providing an overview of the changes that have been occurred at micro level to the firm’s organization of production. The economic actors have to deal with challenges posed by processes of internationalisation and globalization, increased and increasing competitive pressure of less developed countries on low value added production activities, changes in technologies and increased environmental turbulence and volatility. As a consequence, it has been widely recognized that the main organizational models of production that fitted well in the 20th century are now partially inadequate and processes aiming to reorganize production activities have been widespread across several economies in recent years. Recently, the emergence of a “new” form of production organization has been proposed both by scholars, practitioners and institutions: the most prominent characteristic of such a model is its recognition of the importance of employees commitment and involvement. As a consequence it is characterized by a strong accent on the human resource management and on those practices that aim to widen the autonomy and responsibility of the workers as well as increasing their commitment to the organization (Osterman, 1994; 2000; Lynch, 2007). This “model” of production organization is by many defined as High Performance Work System (HPWS). Despite the increasing diffusion of workplace practices that may be inscribed within the concept of HPWS in western countries’ companies, it is an hazard, to some extent, to speak about the emergence of a “new organizational paradigm”. The discussion about organizational changes and the diffusion of HPWP the focus cannot abstract from a discussion about the industrial relations systems, with a particular accent on the employment relationships, because of their relevance, in the same way as production organization, in determining two major outcomes of the firm: innovation and economic performances. The argument is treated starting from the issue of the Social Dialogue at macro level, both in an European perspective and Italian perspective. The model of interaction between the social parties has repercussions, at micro level, on the employment relationships, that is to say on the relations between union delegates and management or workers and management. Finding economic and social policies capable of sustaining growth and employment within a knowledge based scenario is likely to constitute the major challenge for the next generation of social pacts, which are the main social dialogue outcomes. As Acocella and Leoni (2007) put forward the social pacts may constitute an instrument to trade wage moderation for high intensity in ICT, organizational and human capital investments. Empirical evidence, especially focused on the micro level, about the positive relation between economic growth and new organizational designs coupled with ICT adoption and non adversarial industrial relations is growing. Partnership among social parties may become an instrument to enhance firm competitiveness. The outcome of the discussion is the integration of organizational changes and industrial relations elements within a unified framework: the HPWS. Such a choice may help in disentangling the potential existence of complementarities between these two aspects of the firm internal structure on economic and innovative performance. With the third chapter starts the more original part of the thesis. The data utilized in order to disentangle the relations between HPWS practices, innovation and economic performance refer to the manufacturing firms of the Reggio Emilia province with more than 50 employees. The data have been collected through face to face interviews both to management (199 respondents) and to union representatives (181 respondents). Coupled with the cross section datasets a further data source is constituted by longitudinal balance sheets (1994-2004). Collecting reliable data that in turn provide reliable results needs always a great effort to which are connected uncertain results. Data at micro level are often subjected to a trade off: the wider is the geographical context to which the population surveyed belong the lesser is the amount of information usually collected (low level of resolution); the narrower is the focus on specific geographical context, the higher is the amount of information usually collected (high level of resolution). For the Italian case the evidence about the diffusion of HPWP and their effects on firm performances is still scanty and usually limited to local level studies (Cristini, et al., 2003). The thesis is also devoted to the deepening of an argument of particular interest: the existence of complementarities between the HPWS practices. It has been widely shown by empirical evidence that when HPWP are adopted in bundles they are more likely to impact on firm’s performances than when adopted in isolation (Ichniowski, Prennushi, Shaw, 1997). Is it true also for the local production system of Reggio Emilia? The empirical analysis has the precise aim of providing evidence on the relations between the HPWS dimensions and the innovative and economic performances of the firm. As far as the first line of analysis is concerned it must to be stressed the fundamental role that innovation plays in the economy (Geroski & Machin, 1993; Stoneman & Kwoon 1994, 1996; OECD, 2005; EC, 2002). On this point the evidence goes from the traditional innovations, usually approximated by R&D investment expenditure or number of patents, to the introduction and adoption of ICT, in the recent years (Brynjolfsson & Hitt, 2000). If innovation is important then it is critical to analyse its determinants. In this work it is hypothesised that organizational changes and firm level industrial relations/employment relations aspects that can be put under the heading of HPWS, influence the propensity to innovate in product, process and quality of the firm. The general argument may goes as follow: changes in production management and work organization reconfigure the absorptive capacity of the firm towards specific technologies and, in so doing, they shape the technological trajectories along which the firm moves; cooperative industrial relations may lead to smother adoption of innovations, because not contrasted by unions. From the first empirical chapter emerges that the different types of innovations seem to respond in different ways to the HPWS variables. The underlying processes of product, process and quality innovations are likely to answer to different firm’s strategies and needs. Nevertheless, it is possible to extract some general results in terms of the most influencing HPWS factors on innovative performance. The main three aspects are training coverage, employees involvement and the diffusion of bonuses. These variables show persistent and significant relations with all the three innovation types. The same do the components having such variables at their inside. In sum the aspects of the HPWS influence the propensity to innovate of the firm. At the same time, emerges a quite neat (although not always strong) evidence of complementarities presence between HPWS practices. In terns of the complementarity issue it can be said that some specific complementarities exist. Training activities, when adopted and managed in bundles, are related to the propensity to innovate. Having a sound skill base may be an element that enhances the firm’s capacity to innovate. It may enhance both the capacity to absorbe exogenous innovation and the capacity to endogenously develop innovations. The presence and diffusion of bonuses and the employees involvement also spur innovative propensity. The former because of their incentive nature and the latter because direct workers participation may increase workers commitment to the organizationa and thus their willingness to support and suggest inovations. The other line of analysis provides results on the relation between HPWS and economic performances of the firm. There have been a bulk of international empirical studies on the relation between organizational changes and economic performance (Black & Lynch 2001; Zwick 2004; Janod & Saint-Martin 2004; Huselid 1995; Huselid & Becker 1996; Cappelli & Neumark 2001), while the works aiming to capture the relations between economic performance and unions or industrial relations aspects are quite scant (Addison & Belfield, 2001; Pencavel, 2003; Machin & Stewart, 1990; Addison, 2005). In the empirical analysis the integration of the two main areas of the HPWS represent a scarcely exploited approach in the panorama of both national and international empirical studies. As remarked by Addison “although most analysis of workers representation and employee involvement/high performance work practices have been conducted in isolation – while sometimes including the other as controls – research is beginning to consider their interactions” (Addison, 2005, p.407). The analysis conducted exploiting temporal lags between dependent and covariates, possibility given by the merger of cross section and panel data, provides evidence in favour of the existence of HPWS practices impact on firm’s economic performance, differently measured. Although it does not seem to emerge robust evidence on the existence of complementarities among HPWS aspects on performances there is evidence of a general positive influence of the single practices. The results are quite sensible to the time lags, inducing to hypothesize that time varying heterogeneity is an important factor in determining the impact of organizational changes on economic performance. The implications of the analysis can be of help both to management and local level policy makers. Although the results are not simply extendible to other local production systems it may be argued that for contexts similar to the Reggio Emilia province, characterized by the presence of small and medium enterprises organized in districts and by a deep rooted unionism, with strong supporting institutions, the results and the implications here obtained can also fit well. However, a hope for future researches on the subject treated in the present work is that of collecting good quality information over wider geographical areas, possibly at national level, and repeated in time. Only in this way it is possible to solve the Gordian knot about the linkages between innovation, performance, high performance work practices and industrial relations.
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
The upgrade of the CERN accelerator complex has been planned in order to further increase the LHC performances in exploring new physics frontiers. One of the main limitations to the upgrade is represented by the collective instabilities. These are intensity dependent phenomena triggered by electromagnetic fields excited by the interaction of the beam with its surrounding. These fields are represented via wake fields in time domain or impedances in frequency domain. Impedances are usually studied assuming ultrarelativistic bunches while we mainly explored low and medium energy regimes in the LHC injector chain. In a non-ultrarelativistic framework we carried out a complete study of the impedance structure of the PSB which accelerates proton bunches up to 1.4 GeV. We measured the imaginary part of the impedance which creates betatron tune shift. We introduced a parabolic bunch model which together with dedicated measurements allowed us to point to the resistive wall impedance as the source of one of the main PSB instability. These results are particularly useful for the design of efficient transverse instability dampers. We developed a macroparticle code to study the effect of the space charge on intensity dependent instabilities. Carrying out the analysis of the bunch modes we proved that the damping effects caused by the space charge, which has been modelled with semi-analytical method and using symplectic high order schemes, can increase the bunch intensity threshold. Numerical libraries have been also developed in order to study, via numerical simulations of the bunches, the impedance of the whole CERN accelerator complex. On a different note, the experiment CNGS at CERN, requires high-intensity beams. We calculated the interpolating Hamiltonian of the beam for highly non-linear lattices. These calculations provide the ground for theoretical and numerical studies aiming to improve the CNGS beam extraction from the PS to the SPS.
Resumo:
L’esposizione degli operatori in campo agricolo alle vibrazioni trasmesse al corpo intero, produce effetti dannosi alla salute nel breve e nel lungo termine. Le vibrazioni che si generano sulle trattrici agricole hanno una elevata intensità e una bassa frequenza. Le componenti orizzontali, amplificate dalla posizione elevata della postazione di guida dall’asse di rollio, presentano maggiori criticità per quanto riguarda i sistemi di smorzamento rispetto alle componenti verticali. Queste caratteristiche rendono difficoltosa la progettazione dei sistemi dedicati alla riduzione del livello vibrazionale per questa categoria di macchine agricole. Nonostante l’installazione di diversi sistemi di smorzamento, il livello di vibrazioni a cui è sottoposto l’operatore può superare, in diverse condizioni di impiego, i livelli massimi imposti dalla legge per la salvaguardia della salute. L’obiettivo di questo lavoro è quello di valutare l’influenza dei moti rigidi di una trattrice (beccheggio, rollio e saltellamento) dotata di sospensione assale anteriore, sospensione cabina e sospensione sedile, sul livello vibrazionale trasmesso all’operatore.E’ stata pertanto strumenta una trattrice con accelerometri e inclinometri installati su telaio, cabina e sedile e utilizzata in diverse condizioni di lavoro in campo e di trasporto su strada. Dall’analisi delle prove effettuate emerge che durante il trasporto su strada è predominante l’accelerazione longitudinale, a causa dell’elevata influenza del beccheggio. La sospensione riduce notevolmente il moto rigido di beccheggio mentre l’effetto della sospensione della cabina è quello di incrementare, in ogni condizione di lavoro, il livello di accelerazione trasmesso dal telaio della macchina.
Resumo:
A densely built environment is a complex system of infrastructure, nature, and people closely interconnected and interacting. Vehicles, public transport, weather action, and sports activities constitute a manifold set of excitation and degradation sources for civil structures. In this context, operators should consider different factors in a holistic approach for assessing the structural health state. Vibration-based structural health monitoring (SHM) has demonstrated great potential as a decision-supporting tool to schedule maintenance interventions. However, most excitation sources are considered an issue for practical SHM applications since traditional methods are typically based on strict assumptions on input stationarity. Last-generation low-cost sensors present limitations related to a modest sensitivity and high noise floor compared to traditional instrumentation. If these devices are used for SHM in urban scenarios, short vibration recordings collected during high-intensity events and vehicle passage may be the only available datasets with a sufficient signal-to-noise ratio. While researchers have spent efforts to mitigate the effects of short-term phenomena in vibration-based SHM, the ultimate goal of this thesis is to exploit them and obtain valuable information on the structural health state. First, this thesis proposes strategies and algorithms for smart sensors operating individually or in a distributed computing framework to identify damage-sensitive features based on instantaneous modal parameters and influence lines. Ordinary traffic and people activities become essential sources of excitation, while human-powered vehicles, instrumented with smartphones, take the role of roving sensors in crowdsourced monitoring strategies. The technical and computational apparatus is optimized using in-memory computing technologies. Moreover, identifying additional local features can be particularly useful to support the damage assessment of complex structures. Thereby, smart coatings are studied to enable the self-sensing properties of ordinary structural elements. In this context, a machine-learning-aided tomography method is proposed to interpret the data provided by a nanocomposite paint interrogated electrically.
Resumo:
Earthquake prediction is a complex task for scientists due to the rare occurrence of high-intensity earthquakes and their inaccessible depths. Despite this challenge, it is a priority to protect infrastructure, and populations living in areas of high seismic risk. Reliable forecasting requires comprehensive knowledge of seismic phenomena. In this thesis, the development, application, and comparison of both deterministic and probabilistic forecasting methods is shown. Regarding the deterministic approach, the implementation of an alarm-based method using the occurrence of strong (fore)shocks, widely felt by the population, as a precursor signal is described. This model is then applied for retrospective prediction of Italian earthquakes of magnitude M≥5.0,5.5,6.0, occurred in Italy from 1960 to 2020. Retrospective performance testing is carried out using tests and statistics specific to deterministic alarm-based models. Regarding probabilistic models, this thesis focuses mainly on the EEPAS and ETAS models. Although the EEPAS model has been previously applied and tested in some regions of the world, it has never been used for forecasting Italian earthquakes. In the thesis, the EEPAS model is used to retrospectively forecast Italian shallow earthquakes with a magnitude of M≥5.0 using new MATLAB software. The forecasting performance of the probabilistic models was compared to other models using CSEP binary tests. The EEPAS and ETAS models showed different characteristics for forecasting Italian earthquakes, with EEPAS performing better in the long-term and ETAS performing better in the short-term. The FORE model based on strong precursor quakes is compared to EEPAS and ETAS using an alarm-based deterministic approach. All models perform better than a random forecasting model, with ETAS and FORE models showing better performance. However, to fully evaluate forecasting performance, prospective tests should be conducted. The lack of objective tests for evaluating deterministic models and comparing them with probabilistic ones was a challenge faced during the study.
Resumo:
Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.