14 resultados para Hierarchical Clustering Model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
The motivating problem concerns the estimation of the growth curve of solitary corals that follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the VBGF for corals is based on two parameters: the ultimate length L∞ and the growth rate k. One aim was to find a more reliable method for estimating these parameters, which can capture the influence of environmental covariates. The main issue with current methods is that they force the linearization of VBGF and neglect intra-individual variability. The idea was to use the hierarchical nonlinear model which has the appealing features of taking into account the influence of collection sites, possible intra-site measurement correlation and variance heterogeneity, and that can handle the influence of environmental factors and all the reliable information that might influence coral growth. This method was used on two databases of different solitary corals i.e. Balanophyllia europaea and Leptopsammia pruvoti, collected in six different sites in different environmental conditions, which introduced a decisive improvement in the results. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of the two parameters and the independence of the ultimate length L∞ from the influence of environmental covariates, so a further aim of the thesis was to propose a new parameterization based on the ultimate length and parameter c which explicitly describes the part of growth ascribable to site-specific conditions such as environmental factors. We explored the possibility of estimating these parameters characterizing the VBGF new parameterization via the nonlinear hierarchical model. Again there was a general improvement with respect to traditional methods. The results of the two parameterizations were similar, although a very slight improvement was observed in the new one. This is, nevertheless, more suitable from a theoretical point of view when considering environmental covariates.
Resumo:
In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.
Resumo:
Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.
Resumo:
The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.
Resumo:
Galaxy clusters occupy a special position in the cosmic hierarchy as they are the largest bound structures in the Universe. There is now general agreement on a hierarchical picture for the formation of cosmic structures, in which galaxy clusters are supposed to form by accretion of matter and merging between smaller units. During merger events, shocks are driven by the gravity of the dark matter in the diffuse barionic component, which is heated up to the observed temperature. Radio and hard-X ray observations have discovered non-thermal components mixed with the thermal Intra Cluster Medium (ICM) and this is of great importance as it calls for a “revision” of the physics of the ICM. The bulk of present information comes from the radio observations which discovered an increasing number of Mpcsized emissions from the ICM, Radio Halos (at the cluster center) and Radio Relics (at the cluster periphery). These sources are due to synchrotron emission from ultra relativistic electrons diffusing through µG turbulent magnetic fields. Radio Halos are the most spectacular evidence of non-thermal components in the ICM and understanding the origin and evolution of these sources represents one of the most challenging goal of the theory of the ICM. Cluster mergers are the most energetic events in the Universe and a fraction of the energy dissipated during these mergers could be channelled into the amplification of the magnetic fields and into the acceleration of high energy particles via shocks and turbulence driven by these mergers. Present observations of Radio Halos (and possibly of hard X-rays) can be best interpreted in terms of the reacceleration scenario in which MHD turbulence injected during these cluster mergers re-accelerates high energy particles in the ICM. The physics involved in this scenario is very complex and model details are difficult to test, however this model clearly predicts some simple properties of Radio Halos (and resulting IC emission in the hard X-ray band) which are almost independent of the details of the adopted physics. In particular in the re-acceleration scenario MHD turbulence is injected and dissipated during cluster mergers and thus Radio Halos (and also the resulting hard X-ray IC emission) should be transient phenomena (with a typical lifetime <» 1 Gyr) associated with dynamically disturbed clusters. The physics of the re-acceleration scenario should produce an unavoidable cut-off in the spectrum of the re-accelerated electrons, which is due to the balance between turbulent acceleration and radiative losses. The energy at which this cut-off occurs, and thus the maximum frequency at which synchrotron radiation is produced, depends essentially on the efficiency of the acceleration mechanism so that observations at high frequencies are expected to catch only the most efficient phenomena while, in principle, low frequency radio surveys may found these phenomena much common in the Universe. These basic properties should leave an important imprint in the statistical properties of Radio Halos (and of non-thermal phenomena in general) which, however, have not been addressed yet by present modellings. The main focus of this PhD thesis is to calculate, for the first time, the expected statistics of Radio Halos in the context of the re-acceleration scenario. In particular, we shall address the following main questions: • Is it possible to model “self-consistently” the evolution of these sources together with that of the parent clusters? • How the occurrence of Radio Halos is expected to change with cluster mass and to evolve with redshift? How the efficiency to catch Radio Halos in galaxy clusters changes with the observing radio frequency? • How many Radio Halos are expected to form in the Universe? At which redshift is expected the bulk of these sources? • Is it possible to reproduce in the re-acceleration scenario the observed occurrence and number of Radio Halos in the Universe and the observed correlations between thermal and non-thermal properties of galaxy clusters? • Is it possible to constrain the magnetic field intensity and profile in galaxy clusters and the energetic of turbulence in the ICM from the comparison between model expectations and observations? Several astrophysical ingredients are necessary to model the evolution and statistical properties of Radio Halos in the context of re-acceleration model and to address the points given above. For these reason we deserve some space in this PhD thesis to review the important aspects of the physics of the ICM which are of interest to catch our goals. In Chapt. 1 we discuss the physics of galaxy clusters, and in particular, the clusters formation process; in Chapt. 2 we review the main observational properties of non-thermal components in the ICM; and in Chapt. 3 we focus on the physics of magnetic field and of particle acceleration in galaxy clusters. As a relevant application, the theory of Alfv´enic particle acceleration is applied in Chapt. 4 where we report the most important results from calculations we have done in the framework of the re-acceleration scenario. In this Chapter we show that a fraction of the energy of fluid turbulence driven in the ICM by the cluster mergers can be channelled into the injection of Alfv´en waves at small scales and that these waves can efficiently re-accelerate particles and trigger Radio Halos and hard X-ray emission. The main part of this PhD work, the calculation of the statistical properties of Radio Halos and non-thermal phenomena as expected in the context of the re-acceleration model and their comparison with observations, is presented in Chapts.5, 6, 7 and 8. In Chapt.5 we present a first approach to semi-analytical calculations of statistical properties of giant Radio Halos. The main goal of this Chapter is to model cluster formation, the injection of turbulence in the ICM and the resulting particle acceleration process. We adopt the semi–analytic extended Press & Schechter (PS) theory to follow the formation of a large synthetic population of galaxy clusters and assume that during a merger a fraction of the PdV work done by the infalling subclusters in passing through the most massive one is injected in the form of magnetosonic waves. Then the processes of stochastic acceleration of the relativistic electrons by these waves and the properties of the ensuing synchrotron (Radio Halos) and inverse Compton (IC, hard X-ray) emission of merging clusters are computed under the assumption of a constant rms average magnetic field strength in emitting volume. The main finding of these calculations is that giant Radio Halos are naturally expected only in the more massive clusters, and that the expected fraction of clusters with Radio Halos is consistent with the observed one. In Chapt. 6 we extend the previous calculations by including a scaling of the magnetic field strength with cluster mass. The inclusion of this scaling allows us to derive the expected correlations between the synchrotron radio power of Radio Halos and the X-ray properties (T, LX) and mass of the hosting clusters. For the first time, we show that these correlations, calculated in the context of the re-acceleration model, are consistent with the observed ones for typical µG strengths of the average B intensity in massive clusters. The calculations presented in this Chapter allow us to derive the evolution of the probability to form Radio Halos as a function of the cluster mass and redshift. The most relevant finding presented in this Chapter is that the luminosity functions of giant Radio Halos at 1.4 GHz are expected to peak around a radio power » 1024 W/Hz and to flatten (or cut-off) at lower radio powers because of the decrease of the electron re-acceleration efficiency in smaller galaxy clusters. In Chapt. 6 we also derive the expected number counts of Radio Halos and compare them with available observations: we claim that » 100 Radio Halos in the Universe can be observed at 1.4 GHz with deep surveys, while more than 1000 Radio Halos are expected to be discovered in the next future by LOFAR at 150 MHz. This is the first (and so far unique) model expectation for the number counts of Radio Halos at lower frequency and allows to design future radio surveys. Based on the results of Chapt. 6, in Chapt.7 we present a work in progress on a “revision” of the occurrence of Radio Halos. We combine past results from the NVSS radio survey (z » 0.05 − 0.2) with our ongoing GMRT Radio Halos Pointed Observations of 50 X-ray luminous galaxy clusters (at z » 0.2−0.4) and discuss the possibility to test our model expectations with the number counts of Radio Halos at z » 0.05 − 0.4. The most relevant limitation in the calculations presented in Chapt. 5 and 6 is the assumption of an “averaged” size of Radio Halos independently of their radio luminosity and of the mass of the parent clusters. This assumption cannot be released in the context of the PS formalism used to describe the formation process of clusters, while a more detailed analysis of the physics of cluster mergers and of the injection process of turbulence in the ICM would require an approach based on numerical (possible MHD) simulations of a very large volume of the Universe which is however well beyond the aim of this PhD thesis. On the other hand, in Chapt.8 we report our discovery of novel correlations between the size (RH) of Radio Halos and their radio power and between RH and the cluster mass within the Radio Halo region, MH. In particular this last “geometrical” MH − RH correlation allows us to “observationally” overcome the limitation of the “average” size of Radio Halos. Thus in this Chapter, by making use of this “geometrical” correlation and of a simplified form of the re-acceleration model based on the results of Chapt. 5 and 6 we are able to discuss expected correlations between the synchrotron power and the thermal cluster quantities relative to the radio emitting region. This is a new powerful tool of investigation and we show that all the observed correlations (PR − RH, PR − MH, PR − T, PR − LX, . . . ) now become well understood in the context of the re-acceleration model. In addition, we find that observationally the size of Radio Halos scales non-linearly with the virial radius of the parent cluster, and this immediately means that the fraction of the cluster volume which is radio emitting increases with cluster mass and thus that the non-thermal component in clusters is not self-similar.
Resumo:
The intensity of regional specialization in specific activities, and conversely, the level of industrial concentration in specific locations, has been used as a complementary evidence for the existence and significance of externalities. Additionally, economists have mainly focused the debate on disentangling the sources of specialization and concentration processes according to three vectors: natural advantages, internal, and external scale economies. The arbitrariness of partitions plays a key role in capturing these effects, while the selection of the partition would have to reflect the actual characteristics of the economy. Thus, the identification of spatial boundaries to measure specialization becomes critical, since most likely the model will be adapted to different scales of distance, and be influenced by different types of externalities or economies of agglomeration, which are based on the mechanisms of interaction with particular requirements of spatial proximity. This work is based on the analysis of the spatial aspect of economic specialization supported by the manufacturing industry case. The main objective is to propose, for discrete and continuous space: i) a measure of global specialization; ii) a local disaggregation of the global measure; and iii) a spatial clustering method for the identification of specialized agglomerations.
Resumo:
This PhD Thesis is part of a long-term wide research project, carried out by the "Osservatorio Astronomico di Bologna (INAF-OABO)", that has as primary goal the comprehension and reconstruction of formation mechanism of galaxies and their evolution history. There is now substantial evidence, both from theoretical and observational point of view, in favor of the hypothesis that the halo of our Galaxy has been at least partially, built up by the progressive accretion of small fragments, similar in nature to the present day dwarf galaxies of the Local Group. In this context, the photometric and spectroscopic study of systems which populate the halo of our Galaxy (i.e. dwarf spheroidal galaxy, tidal streams, massive globular cluster, etc) permits to discover, not only the origin and behaviour of these systems, but also the structure of our Galactic halo, combined with its formation history. In fact, the study of the population of these objects and also of their chemical compositions, age, metallicities and velocity dispersion, permit us not only an improvement in the understanding of the mechanisms that govern the Galactic formation, but also a valid indirect test for cosmological model itself. Specifically, in this Thesis we provided a complete characterization of the tidal Stream of the Sagittarius dwarf spheroidal galaxy, that is the most striking example of the process of tidal disruption and accretion of a dwarf satellite in to our Galaxy. Using Red Clump stars, extracted from the catalogue of the Sloan Digital Sky Survey (SDSS) we obtained an estimate of the distance, the depth along the line of sight and of the number density for each detected portion of the Stream (and more in general for each detected structure along our line of sight). Moreover comparing the relative number (i.e. the ratio) of Blue Horizontal Branch stars and Red Clump stars (the two features are tracers of different age/different metallicity populations) in the main body of the galaxy and in the Stream, in order to verify the presence of an age-metallicity gradient along the Stream. We also report the detection of a population of Red Clump stars probably associated with the recently discovered Bootes III stellar system. Finally, we also present the results of a survey of radial velocities over a wide region, extending from r ~ 10' out to r ~ 80' within the massive star cluster Omega Centauri. The survey was performed with FLAMES@VLT, to study the velocity dispersion profile in the outer regions of this stellar system. All the results presented in this Thesis, have already been published in refeered journals.
Resumo:
There are different ways to do cluster analysis of categorical data in the literature and the choice among them is strongly related to the aim of the researcher, if we do not take into account time and economical constraints. Main approaches for clustering are usually distinguished into model-based and distance-based methods: the former assume that objects belonging to the same class are similar in the sense that their observed values come from the same probability distribution, whose parameters are unknown and need to be estimated; the latter evaluate distances among objects by a defined dissimilarity measure and, basing on it, allocate units to the closest group. In clustering, one may be interested in the classification of similar objects into groups, and one may be interested in finding observations that come from the same true homogeneous distribution. But do both of these aims lead to the same clustering? And how good are clustering methods designed to fulfil one of these aims in terms of the other? In order to answer, two approaches, namely a latent class model (mixture of multinomial distributions) and a partition around medoids one, are evaluated and compared by Adjusted Rand Index, Average Silhouette Width and Pearson-Gamma indexes in a fairly wide simulation study. Simulation outcomes are plotted in bi-dimensional graphs via Multidimensional Scaling; size of points is proportional to the number of points that overlap and different colours are used according to the cluster membership.
Resumo:
Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.
Resumo:
Nowadays, one of the most ambitious challenges in soft robotics is the development of actuators capable to achieve performance comparable to skeletal muscles. Scientists have been working for decades, inspired by Nature, to mimic both their complex structure and their perfectly balanced features in terms of linear contraction, force-to-weight ratio, scalability and flexibility. The present Thesis, contextualized within the FET open Horizon 2020 project MAGNIFY, aims to develop a new family of innovative flexible actuators in the field of soft-robotics. For the realization of this actuator, a biomimetic approach has been chosen, drawing inspiration from skeletal muscle. Their hierarchical fibrous structure was mimicked employing the electrospinning technique, while the contraction of sarcomeres was designed employing chains of molecular machines, supramolecular systems capable of performing movements useful to execute specific tasks. The first part deals with the design and production of the basic unit of the artificial muscle, the artificial myofibril, consisting in a novel electrospun core-shell nanofiber, with elastomeric shell and electrically conductive core, coupled with a conductive coating, for the realization of which numerous strategies have been investigated. The second part deals instead with the integration of molecular machines (provided by the project partners) inside these artificial myofibrils, preceded by the study of several model molecules, aimed at simulating the presence of these molecular machines during the initial phases of the project. The last part concerns the realization of an electrospun multiscale hierarchical structure, aimed at reproducing the entire muscle morphology and fibrous organization. These research will be joined together in the near future like the pieces of a puzzle, recreating the artificial actuator most similar to biological muscle ever made, composed of millions of artificial myofibrils, electrically activated in which the nano-scale movement of molecular machines will be incrementally amplified to the macro-scale contraction of the artificial muscle.
Resumo:
This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.