3 resultados para Heme Oxygenase
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Manipolazione del metabolismo degli xenobiotici da frutta convenzionale ed attività chemiopreventiva
Resumo:
A reduced cancer risk associated with fruit and vegetable phytochemicals initially dictated chemopreventive approaches focused on specific green variety consumption or even single nutrient supplementations. However, these strategies not only failed to provide any health benefits but gave rise to detrimental effects. In parallel, public-health chemoprevention programmes were developed in the USA and Europe to increase whole vegetable consumption. Among these, the National Cancer Institute (NCI) sponsored plan “5 to 9 a day for a better health” was one of the most popular. This campaign promoted wide food choice through the consumption of at least 5 to 9 servings a day of colourful fruits and vegetables. In this study the effects of the diet suggested by NCI on transcription, translation and catalytic activity of both xenobiotic metabolizing (XME) and antioxidant enzymes were studied in the animal model. In fact, the boost of both antioxidant defences and “good” phase-II together with down-regulation of “bad” phase-I XMEs is still considered one of the most widely-used strategies of cancer control. Six male Sprague Dawley rats for each treatment group were used. According to the Italian Society of Human Nutrition, a serving of fruit, vegetables and leafy greens corresponds to 150, 250 and 50 g, respectively, in a 70 kg man. Proportionally, rats received one or five servings of lyophilized onion, tomato, peach, black grape or lettuce – for white, red, yellow, violet or green diet, respectively - or five servings of each green (“5 a day” diet) by oral gavage daily for 10 consecutive days. Liver subcellular fractions were tested for various cytochrome P450 (CYP) linked-monooxygenases, phase-II supported XMEs such as glutathione S-transferase (GST) and UDP-glucuronosyl transferase (UDPGT) as well as for some antioxidant enzymes. Hepatic transcriptional and translational effects were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. dROMs test was used to measure plasmatic oxidative stress. Routine haematochemical parameters were also monitored. While the five servings administration didn’t significantly vary XME catalytic activity, the lower dose caused a complex pattern of CYP inactivation with lettuce exerting particularly strong effects (a loss of up to 43% and 45% for CYP content and CYP2B1/2-linked XME, respectively; P<0.01). “5 a day” supplementation produced the most pronounced modulations (a loss of up to 60% for CYP2E1-linked XME and a reduction of CYP content of 54%; P<0.01). Testosterone hydroxylase activity confirmed these results. RT-PCR and Western blot analysis revealed that the “5 a day” diet XMEs inactivations were a result of both a transcriptional and a translational effect while lettuce didn’t exert such effects. All administrations brought out none or fewer modulation of phase-II supported XMEs. Apart from “5 a day” supplementation and the single serving of lettuce, which strongly induced DT- diaphorase (an increase of up to 141 and 171%, respectively; P<0.01), antioxidant enzymes were not significantly changed. RT-PCR analysis confirmed DT-diaphorase induction brought about by the administration of both “5 a day” diet and a single serving of lettuce. Furthermore, it unmasked a similar result for heme-oxygenase. dROMs test provided insight into a condition of high systemic oxidative stress as a consequence of animal diet supplementation with “5 a day” diet and a single serving of lettuce (an increase of up to 600% and 900%, respectively; P<0.01). Haematochemical parameters were mildly affected by such dietary manipulations. According to the classical chemopreventive theory, these results could be of particular relevance. In fact, even if antioxidant enzymes were only mildly affected, the phase-I inactivating ability of these vegetables would be a worthy strategy to cancer control. However, the recorded systemic considerable amount of reactive oxygen species and the complexity of these enzymes and their functions suggest caution in the widespread use of vegan/vegetarian diets as human chemopreventive strategies. In fact, recent literature rather suggests that only diets rich in fruits and vegetables and poor in certain types of fat, together with moderate caloric intake, could be associated with reduced cancer risk.
Resumo:
The MTDL (multi-target-directed ligand) design strategy is used to develop single chemical entities that are able to simultaneously modulate multiple targets. The development of such compounds might disclose new avenues for the treatment of a variety of pathologies (e.g. cancer, AIDS, neurodegenerative diseases), for which an effective cure is urgently needed. This strategy has been successfully applied to Alzheimer’s disease (AD) due to its multifactorial nature, involving cholinergic dysfunction, amyloid aggregation, and oxidative stress. Despite many biological entities have been recognized as possible AD-relevant, only four achetylcholinesterase inhibitors (AChEIs) and one NMDA receptor antagonist are used in therapy. Unfortunately, such compounds are not disease-modifying agents behaving only as cognition enhancers. Therefore, MTDL strategy is emerging as a powerful drug design paradigm: pharmacophores of different drugs are combined in the same structure to afford hybrid molecules. In principle, each pharmacophore of these new drugs should retain the ability to interact with its specific site(s) on the target and, consequently, to produce specific pharmacological responses that, taken together, should slow or block the neurodegenerative process. To this end, the design and synthesis of several examples of MTDLs for combating neurodegenerative diseases have been published. This seems to be the more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling the multifactorial nature of AD, and hopefully stopping its progression. According to this emerging strategy, in this work thesis different classes of new molecular structures, based on the MTDL approach, have been developed. Moreover, curcumin and its constrained analogs have currently received remarkable interest as they have a unique conjugated structure which shows a pleiotropic profile that we considered a suitable framework in developing MTDLs. In fact, beside the well-known direct antioxidant activity, curcumin displays a wide range of biological properties including anti-inflammatory and anti-amyloidogenic activities and an indirect antioxidant action through activation of the cytoprotective enzyme heme oxygenase (HO-1). Thus, since many lines of evidence suggest that oxidative stess and mitochondria impairment have a cental role in age-related neurodegenerative diseases such as AD, we designed mitochondria-targeted antioxidants by connecting curcumin analogs to different polyamine chains that, with the aid of electrostatic force, might drive the selected antioxidant moiety into mitochondria.
Resumo:
The Reverse Vaccinology (RV) approach allows using genomic information for the delineation of new protein-based vaccines starting from an in silico analysis. The first powerful example of the application of the RV approach is given by the development of a protein-based vaccine against serogroup B Meningococcus. A similar approach was also used to identify new Staphylococcus aureus vaccine candidates, including the ferric hydroxamate-binding lipoprotein FhuD2. S. aureus is a widespread human pathogen, which employs various different strategies for iron uptake, including: (i) siderophore-mediated iron acquisition using the endogenous siderophores staphyloferrin A and B, (ii) siderophore-mediated iron acquisition using xeno-siderophores (the pathway exploited by FhuD2) and (iii) heme-mediated iron acquisition. In this work the high resolution crystal structure of FhuD2 in the iron (III)-siderophore-bound form was determined. FhuD2 belongs to the Periplasmic Binding Protein family (PBP ) class III, and is principally formed by two globular domains, at the N- and C-termini of the protein, that make up a cleft where ferrichrome-iron (III) is bound. The N- and C-terminal domains, connected by a single long α-helix, present Rossmann-like folds, showing a β-stranded core and an α-helical periphery, which do not undergo extensive structural rearrangement when they interact with the ligand, typical of class III PBP members. The structure shows that ferrichrome-bound iron does not come directly into contact with the protein; rather, the metal ion is fully coordinated by six oxygen donors of the hydroxamate groups of three ornithine residues, which, with the three glycine residues, make up the peptide backbone of ferrichrome. Furthermore, it was found that iron-free ferrichrome is able to subtract iron from transferrin. This study shows for the first time the structure of FhuD2, which was found to bind to siderophores ,and that the protein plays an important role in S. aureus colonization and infection phases.