7 resultados para Heat fluid flow

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to increased interest in miniaturization, great attention has been given in the recent decade to the micro heat exchanging systems. Literature survey suggests that there is still a limited understanding of gas flows in micro heat exchanging systems. The aim of the current thesis is to further the understanding of fluid flow and heat transfer phenomenon inside such geometries when a compressible working fluid is utilized. A combined experimental and numerical approach has been utilized in order to overcome the lack of employable sensors for micro dimensional channels. After conducting a detailed comparison between various data reduction methodologies employed in the literature, the best suited methodology for gas microflow experimentalists is proposed. A transitional turbulence model is extensively validated against the experimental results of the microtubes and microchannels under adiabatic wall conditions. Heat transfer analysis of single microtubes showed that when the compressible working fluid is used, Nusselt number results are in partial disagreement with the conventional theory at highly turbulent flow regime for microtubes having a hydraulic diameter less than 250 microns. Experimental and numerical analysis on a prototype double layer microchannel heat exchanger showed that compressibility is detrimental to the thermal performance. It has been found that compressibility effects for micro heat exchangers are significant when the average Mach number at the outlet of the microchannel is greater than 0.1 compared to the adiabatic limit of 0.3. Lastly, to avoid a staggering amount of the computational power needed to simulate the micro heat exchanging systems with hundreds of microchannels, a reduced order model based on the porous medium has been developed that considers the compressibility of the gas inside microchannels. The validation of the proposed model against experimental results of average thermal effectiveness and the pressure loss showed an excellent match between the two.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extensive mass transport deposits and multiple slide scars testify widespread and recurrent submarine sediment failures occurring during the late Quaternary on the SW-Adriatic and SE-Sicilian margins. These mass movements and their consequences contributed to shape the continental slopes and fill the basins with characteristic signatures. Geomorphological, seismo-stratigraphic, sedimentological and biostratigraphic data provide clues to: 1) define distinct failure mechanisms investigating on factors that determine dissimilar organization of coeval displaced masses, 2) reconstruct successive phases of failure stressing on the same location where slide scars crosscut and mass-transport deposits overlap, 3) analyze regional setting and indicate the most suitable place where to calculate mass wasting frequency. Discussions on the role of fluid flow, currents activity and tectonic deformation determine a wider view on the construction of the studied continental margins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigates the slamming phenomenon experienced during the water entry of deformable bodies. Wedges are chosen as reference geometry due to their similarity to a generic hull section. Hull slamming is a phenomenon occurring when a ship re-enters the water after having been partially or completely lifted out the water. While the analysis of rigid structures entering the water has been extensively studied in the past and there are analytical solutions capable of correctly predicting the hydrodynamic pressure distribution and the overall impact dynamics, the effect of the structural deformation on the structural force is still a challenging problem to be solved. In fact, in case of water impact of deformable bodies, the dynamic deflection could interact with the fluid flow, changing the hydrodynamic load. This work investigates the hull-slamming problem by experiments and numerical simulations of the water entry of elastic wedges impacting on an initially calm surface. The effect of asymmetry due to horizontal velocity component or initial tilt angle on the impact dynamics is also studied. The objective of this work is to determine an accurate model to predict the overall dynamics of the wedge and its deformations. More than 1200 experiments were conducted by varying wedge structural stiffness, deadrise angle, impact velocity and mass. On interest are the overall impact dynamics and the local structural deformation of the panels composing the wedge. Alongside with the experimental analysis, numerical simulations based on a coupled Smoothed Particle Hydrodynamics (SPH) and FEM method are developed. The experimental results provide evidence of the mutual interaction between hydrodynamic load and structural deformation. It is found a simple criterion for the onset of fluid structure interaction (FSI), giving reliable information on the cases where FSI should been taken into account.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thrust fault-related folds in carbonate rocks are characterized by deformation accommodated by different structures, such as joints, faults, pressure solution seams, and deformation bands. Defining the development of fracture systems related to the folding process is significant both for theoretical and practical purposes. Fracture systems are useful constrains in order to understand the kinematical evolution of the fold. Furthermore, understanding the relationships between folding and fracturing provides a noteworthy contribution for reconstructing the geodynamic and the structural evolution of the studied area. Moreover, as fold-related fractures influence fluid flow through rocks, fracture systems are relevant for energy production (geothermal studies, methane and CO2 , storage and hydrocarbon exploration), environmental and social issues (pollutant distribution, aquifer characterization). The PhD project shows results of a study carried out in a multilayer carbonate anticline characterized by different mechanical properties. The aim of this study is to understand the factors which influence the fracture formation and to define their temporal sequence during the folding process. The studied are is located in the Cingoli anticline (Northern Apennines), which is characterized by a pelagic multilayer characterized by sequences with different mechanical stratigraphies. A multi-scale analysis has been made in several outcrops located in different structural positions. This project shows that the conceptual sketches proposed in literature and the strain distribution models outline well the geometrical orientation of most of the set of fractures observed in the Cingoli anticline. On the other hand, the present work suggests the relevance of the mechanical stratigraphy in particular controlling the type of fractures formed (e.g. pressure solution seams, joints or shear fractures) and their subsequent evolution. Through a multi-scale analysis, and on the basis of the temporal relationship between fracture sets and their orientation respect layering, I also suggest a conceptual model for fracture systems formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.