6 resultados para Healthy Aging

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is part of the EU Integrated Project “GEHA – Genetics of Healthy Aging” (Franceschi C et al., Ann N Y Acad Sci. 1100: 21-45, 2007), whose aim is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced age in good cognitive and physical function and in the absence of major age-related diseases. Aims The major aims of this thesis were the following: 1. to outline the recruitment procedure of 90+ Italian siblings performed by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The procedures related to the following items necessary to perform the study were described and commented: identification of the eligible area for recruitment, demographic aspects related to the need of getting census lists of 90+siblings, mail and phone contact with 90+ subjects and their families, bioethics aspects of the whole procedure, standardization of the recruitment methodology and set-up of a detailed flow chart to be followed by the European recruitment centres (obtainment of the informed consent form, anonimization of data by using a special code, how to perform the interview, how to collect the blood, how to enter data in the GEHA Phenotypic Data Base hosted at Odense). 2. to provide an overview of the phenotypic characteristics of 90+ Italian siblings recruited by the recruiting units of the University of Bologna (UNIBO) and Rome (ISS). The following items were addressed: socio-demographic characteristics, health status, cognitive assessment, physical conditions (handgrip strength test, chair-stand test, physical ability including ADL, vision and hearing ability, movement ability and doing light housework), life-style information (smoking and drinking habits) and subjective well-being (attitude towards life). Moreover, haematological parameters collected in the 90+ sibpairs as optional parameters by the Bologna and Rome recruiting units were used for a more comprehensive evaluation of the results obtained using the above mentioned phenotypic characteristics reported in the GEHA questionnaire. 3. to assess 90+ Italian siblings as far as their health/functional status is concerned on the basis of three classification methods proposed in previous studies on centenarians, which are based on: • actual functional capabilities (ADL, SMMSE, visual and hearing abilities) (Gondo et al., J Gerontol. 61A (3): 305-310, 2006); • actual functional capabilities and morbidity (ADL, ability to walk, SMMSE, presence of cancer, ictus, renal failure, anaemia, and liver diseases) (Franceschi et al., Aging Clin Exp Res, 12:77-84, 2000); • retrospectively collected data about past history of morbidity and age of disease onset (hypertension, heart disease, diabetes, stroke, cancer, osteopororis, neurological diseases, chronic obstructive pulmonary disease and ocular diseases) (Evert et al., J Gerontol A Biol Sci Med Sci. 58A (3): 232-237, 2003). Firstly these available models to define the health status of long-living subjects were applied to the sample and, since the classifications by Gondo and Franceschi are both based on the present functional status, they were compared in order to better recognize the healthy aging phenotype and to identify the best group of 90+ subjects out of the entire studied population. 4. to investigate the concordance of health and functional status among 90+ siblings in order to divide sibpairs in three categories: the best (both sibs are in good shape), the worst (both sibs are in bad shape) and an intermediate group (one sib is in good shape and the other is in bad shape). Moreover, the evaluation wanted to discover which variables are concordant among siblings; thus, concordant variables could be considered as familiar variables (determined by the environment or by genetics). 5. to perform a survival analysis by using mortality data at 1st January 2009 from the follow-up as the main outcome and selected functional and clinical parameters as explanatory variables. Methods A total of 765 90+ Italian subjects recruited by UNIBO (549 90+ siblings, belonging to 258 families) and ISS (216 90+ siblings, belonging to 106 families) recruiting units are included in the analysis. Each subject was interviewed according to a standardized questionnaire, comprising extensively utilized questions that have been validated in previous European studies on elderly subjects and covering demographic information, life style, living conditions, cognitive status (SMMSE), mood, health status and anthropometric measurements. Moreover, subjects were asked to perform some physical tests (Hand Grip Strength test and Chair Standing test) and a sample of about 24 mL of blood was collected and then processed according to a common protocol for the preparation and storage of DNA aliquots. Results From the analysis the main findings are the following: - a standardized protocol to assess cognitive status, physical performances and health status of European nonagenarian subjects was set up, in respect to ethical requirements, and it is available as a reference for other studies in this field; - GEHA families are enriched in long-living members and extreme survival, and represent an appropriate model for the identification of genes involved in healthy aging and longevity; - two simplified sets of criteria to classify 90+ sibling according to their health status were proposed, as operational tools for distinguishing healthy from non healthy subjects; - cognitive and functional parameters have a major role in categorizing 90+ siblings for the health status; - parameters such as education and good physical abilities (500 metres walking ability, going up and down the stairs ability, high scores at hand grip and chair stand tests) are associated with a good health status (defined as “cognitive unimpairment and absence of disability”); - male nonagenarians show a more homogeneous phenotype than females, and, though far fewer in number, tend to be healthier than females; - in males the good health status is not protective for survival, confirming the male-female health survival paradox; - survival after age 90 was dependent mainly on intact cognitive status and absence of functional disabilities; - haemoglobin and creatinine levels are both associated with longevity; - the most concordant items among 90+ siblings are related to the functional status, indicating that they contain a familiar component. It is still to be investigated at what level this familiar component is determined by genetics or by environment or by the interaction between genetics, environment and chance (and at what level). Conclusions In conclusion, we could state that this study, in accordance with the main objectives of the whole GEHA project, represents one of the first attempt to identify the biological and non biological determinants of successful/unsuccessful aging and longevity. Here, the analysis was performed on 90+ siblings recruited in Northern and Central Italy and it could be used as a reference for others studies in this field on Italian population. Moreover, it contributed to the definition of “successful” and “unsuccessful” aging and categorising a very large cohort of our most elderly subjects into “successful” and “unsuccessful” groups provided an unrivalled opportunity to detect some of the basic genetic/molecular mechanisms which underpin good health as opposed to chronic disability. Discoveries in the topic of the biological determinants of healthy aging represent a real possibility to identify new markers to be utilized for the identification of subgroups of old European citizens having a higher risk to develop age-related diseases and disabilities and to direct major preventive medicine strategies for the new epidemic of chronic disease in the 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aging process is characterized by the progressive fitness decline experienced at all the levels of physiological organization, from single molecules up to the whole organism. Studies confirmed inflammaging, a chronic low-level inflammation, as a deeply intertwined partner of the aging process, which may provide the “common soil” upon which age-related diseases develop and flourish. Thus, albeit inflammation per se represents a physiological process, it can rapidly become detrimental if it goes out of control causing an excess of local and systemic inflammatory response, a striking risk factor for the elderly population. Developing interventions to counteract the establishment of this state is thus a top priority. Diet, among other factors, represents a good candidate to regulate inflammation. Building on top of this consideration, the EU project NU-AGE is now trying to assess if a Mediterranean diet, fortified for the elderly population needs, may help in modulating inflammaging. To do so, NU-AGE enrolled a total of 1250 subjects, half of which followed a 1-year long diet, and characterized them by mean of the most advanced –omics and non –omics analyses. The aim of this thesis was the development of a solid data management pipeline able to efficiently cope with the results of these assays, which are now flowing inside a centralized database, ready to be used to test the most disparate scientific hypotheses. At the same time, the work hereby described encompasses the data analysis of the GEHA project, which was focused on identifying the genetic determinants of longevity, with a particular focus on developing and applying a method for detecting epistatic interactions in human mtDNA. Eventually, in an effort to propel the adoption of NGS technologies in everyday pipeline, we developed a NGS variant calling pipeline devoted to solve all the sequencing-related issues of the mtDNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota. The study presented here is focused on the application and comparison of two different microarray approaches for the characterization of the human gut microbiota, the HITChip and the HTF-Microb.Array, with particular attention to the effects of the aging process on the composition of this ecosystem. By using the Human Intestinal Tract Chip (HITChip), recently developed at the Wageningen University, The Netherland, we explored the age-related changes of gut microbiota during the whole adult lifespan, from young adults, through elderly to centenarians. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment of facultative anaerobes. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammation status, also known as inflamm-aging, as determined by a range of peripheral blood inflammatory markers. In parallel, we overtook the development of our own phylogenetic microarray with a lower number of targets, aiming the description of the human gut microbiota structure at high taxonomic level. The resulting chip was called High Taxonomic level Fingerprinting Microbiota Array (HTF-Microb.Array), and was based on the Ligase Detection Reaction (LDR) technology, which allowed us to develop a fast and sensitive tool for the fingerprint of the human gut microbiota in terms of presence/absence of the principal groups. The validation on artificial DNA mixes, as well as the pilot study involving eight healthy young adults, demonstrated that the HTF-Microb.Array can be used to successfully characterize the human gut microbiota, allowing us to obtain results which are in approximate accordance with the most recent characterizations. Conversely, the evaluation of the relative abundance of the target groups on the bases of the relative fluorescence intensity probes response still has some hindrances, as demonstrated by comparing the HTF.Microb.Array and HITChip high taxonomic level fingerprints of the same centenarians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Glycomic analysis allows investigating on the global glycome within body fluids (as serum/plasma), this could eventually lead to identify new types of disease biomarkers, or as in this study, biomarkers of human aging studying specific aging models. Recent studies demonstrated that the plasma N-glycome is modified during human aging, suggesting that measurements of log-ratio of two serum/plasma N-glycans (NGA2F and NA2F), named GlycoAge test could provide a non-invasive biomarker of aging. Down syndrome (DS) is a genetic disorder in which multiple major aspects of senescent phenotype occur much earlier than in healthy age-matched subjects and has been often defined as an accelerated aging syndrome. The aim of this study was to compare plasma N-glycome of patients affected by DS with age- and sex matched non-affected controls, represented by their siblings (DSS), in order to assess if DS is characterized by a specific N-glycomic pattern. Therefore, in order to investigate if N-glycans changes that occur in DS were able to reveal an accelerated aging in DS patients, we enrolled the mothers (DSM) of the DS and DSS, representing the non-affected control group with a different chronological age respect to DS. We applied two different N-glycomics approaches on the same samples: first, in order to study the complete plasma N-glycome we applied a new high-sensitive protocol based on a MALDI-TOF-MS approach, second, we used DSA-FACE technology. Results: MALDI-TOF/MS analysis detected a specific N-glycomics signature for DS, characterized by an increase of fucosylated and bisecting species. Moreover, in DS the abundance of agalactosylated (as NA2F) species was similar or higher than their mothers. The measurement of GlycoAge test with DSA-FACE, validated also by MALDI-TOF, demonstrated a strongly association with age, moreover in DS, it’s value was similar to their mothers, and significantly higher than their age- and sex matched not-affected siblings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is characterized by a chronic, low-grade inflammatory state called “inflammaging”. Mitochondria are the main source of reactive oxygen species (ROS), which trigger the production of pro-inflammatory molecules. We are interested in studying the age-related modifications of the mitochondrial DNA (mtDNA), which can be affected by the lifelong exposure to ROS and are responsible of mitochondrial dysfunction. Moreover, increasing evidences show that telomere shortening, naturally occurring with aging, is involved in mtDNA damage processes and thus in the pathogenesis of age-related disorders. Thus the primary aim of this thesis was the analysis of mtDNA copy number, deletion level and integrity in different-age human biopsies from liver, vastus lateralis skeletal muscle of healthy subjects and patients with limited mobility of lower limbs (LMLL), as well as adipose tissue. The telomere length and the expression of nuclear genes related to mitobiogenesis, fusion and fission, mitophagy, mitochondrial protein quality control system, hypoxia, production and protection from ROS were also evaluated. In liver the decrease in mtDNA integrity with age is accompanied with an increase in mtDNA copy number, suggesting the existence of a “compensatory mechanism” able to maintain the functionality of this organ. Different is the case of vastus lateralis muscle, where any “compensatory pathway” is activated and mtDNA integrity and copy number decrease with age, both in healthy subjects and in patients. Interestingly, mtDNA rearrangements do not incur in adipose tissue with advancing age. Finally, in all tissues a marked gender difference appears, suggesting that aging and also gender diversely affect mtDNA rearrangements and telomere length in the three human tissues considered, likely depending on their different metabolic needs and inflammatory status.