6 resultados para Health Sciences, Occupational Health and Safety|Biology, Genetics|Health Sciences, Public Health
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of the first part of this thesis was to evaluate the effect of trans fatty acid- (TFA), contaminant, polycyclic aromatic hydrocarbon (PAH)- and oxidation productenriched diets on the content of TFA and conjugated linoleic acid (CLA) isomers in meat and liver of both poultry and rabbit. The enriched feedings were prepared with preselected fatty co-and by-products that contained low and high levels of TFA (low, palm fatty acid distillate; high, hydrogenated palm fatty acid distillate), environmental contaminants (dioxins and PCBs) (two different fish oils), PAH (olive oil acid oils and pomace olive oil from chemical refining, for low and high levels) and oxidation products (sunflower-olive oil blend before and after frying), so as to obtain single feedings with three enrichment degrees (high, medium and low) of the compound of interest. This experimental set-up is a part of a large, collaborative European project (http://www.ub.edu/feedfat/), where other chemical and health parameters are assessed. Lipids were extracted, methylated with diazomethane, then transmethylated with 2N KOH/methanol and analyzed by GC and silver-ion TLC-GC. TFA and CLA were determined in the fats, the feedings, meat and liver of both poultry and rabbit. In general, the level of TFA and CLA in meat and liver mainly varied according to those originally found in the feeding fats. It must be pointed out, though, that TFA and CLA accumulation was different for the two animal species, as well as for the two types of tissues. The TFA composition of meat and liver changes according to the composition of the oils added to the feeds with some differences between species. Chicken meat with skin shows higher TFA content (2.6–5.4 fold) than rabbit meat, except for the “PAH” trial. Chicken liver shows higher TFA content (1.2–2.1 fold) than rabbit liver, except for the “TRANS” and “PAH” trials. In both chicken and rabbit meats, the TFA content was higher for the “TRANS” trial, followed by the “DIOXIN” trial. Slight differences were found on the “OXIDATION” and “PAH” trends in both types of meats. In both chicken and rabbit livers, the TFA content was higher for the “TRANS” trial, followed by those of the “PAH”, “DIOXIN” and “OXIDATION” trials. This trend, however, was not identical to that of feeds, where the TFA content varied as follows: “TRANS” > “DIOXIN” >“PAH” > “OXIDATION”. In chicken and rabbit meat samples, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, except for the “DIOXIN” trial where C18:3 TFA > C18:2 TFA. In chicken and rabbit liver samples of the “TRANS” and “OXIDATION” trials, C18:1 TFA were the most abundant, followed by C18:2 TFA and C18:3 TFA, whereas C18:3 TFA > C18:2 in the “DIOXIN” trial. Slight differences were found on the “PAH” trend in livers from both species. The second part of the thesis dealt with the study of lipid oxidation in washed turkey muscle added with different antioxidants. The evaluation on the oxidative stability of muscle foods found that oxidation could be measured by headspace solid phase microestraction (SPME) of hexanal and propanal. To make this method effective, an antioxidant system was added to stored muscle to stop the oxidative processes. An increase in ionic strength of the sample was also implemented to increase the concentration of aldehydes in the headspace. This method was found to be more sensitive than the commonly used thiobarbituric acid reactive substances (TBARs) method. However, after antioxidants were added and oxidation was stopped, the concentration of aldehydes decreased. It was found that the decrease in aldehyde concentration was due to the binding of the aldehydes to muscle proteins, thus decreasing the volatility and making them less detectable.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.
Resumo:
The development of new “green” and sustainable approaches to reduce food wastes, guaranteeing food quality, microbiological safety and the environmental sustainability, is of great interest for food industry. This PhD thesis, as part of the European project BioProMedFood (PRIMA–Section2 Programme), was focused on two strategies: the use of natural antimicrobials and the application of microbial strains isolated from spontaneously fermented products. The first part concerned the valorisation of microbial biodiversity of 15 Mediterranean spontaneously fermented sausages, through the isolation of autochthonous lactic acid bacteria (LAB) strains, mainly Latilactobacillus sakei, that were characterised regarding their safety and technological aspects. The most promising strains were tested as bio-protective cultures in fresh sausages, showing promising anti-listerial activity, or as starter cultures in fermented sausages. The second part of the research was focused on the use of natural compounds (phenolic extracts and essential oils from Juniperus oxycedrus needles and Rubus fruticosus leaves) with antimicrobial potential. They were tested in vitro against List. monocytogenes and Enterococcus faecium, showing differences in relation to species and type of extracts, but they hint at important possibilities for applications in specific foods. Concluding, this PhD thesis highlighted the great potential of traditional meat products as an isolation source of new strains with industrial importance. Moreover, the antimicrobial potential of compounds obtained from plant matrices opened promising perspectives to exploit them as “green” strategies to increase fresh food safety. The last topic of research, carry out in collaboration with Department of Nutrition and Food Sciences (University of Granada), investigated the effect of LAB fermentation on avocado leaves by-products, focusing on the bio-availability of phenolic compounds in the plant extracts, caused by microbial metabolism.
Resumo:
BACKGROUND Neuroendocrine neoplasia (NEN) are divided in well differentiated G1,G2 and G3 neuroendocrine tumors (NETs) and G3 neuroendocrine carcinomas (NECs). For the latter no standard therapy in second-line is available and prognosis is poor. METHODS Primary aim was to evaluate new prognostic and predictive biomarkers (WP1-3). In WP4 we explored the activity of FOLFIRI and CAPTEM as second-line in NEC patients in a multicenter non-comparative phase II trial RESULTS In WP1-2 we found that 4 of 6 GEP-NEC patients with a negative 68Ga-PET/CT had a loss of expression of RB1. In WP3 on 47 GEP-NENs patients the presence of DLL3 in 76.9% of G3 NEC correlate with RB1-loss (p<0.001), negative 68Ga-PET/CT(p=0.001) and a poor prognosis. In the WP4 we conducted a multicenter non-comparative phase II trial to explore the activity of FOLFIRI or CAPTEM in terms of DCR, PFS and OS given as second-line in NEC patients. From 06/03/2017 to 18/01/2021 53 out of 112 patients were enrolled in 17 of 23 participating centers. Median follow-up was 10.8 (range 1.4 – 38.6) months. The 3-month DCR was 39.3% in the FOLFIRI and 32.0 % in the CAPTEM arm. The 6-months PFS rate was 34.6% ( 95%CI 17.5-52.5) in FOLFIRI and 9.6% (95%CI 1.8-25.7) in CAPTEM group. In the FOLFIRI subgroup the 6-months and 12-months OS rate were 55.4% (95%CI 32.6-73.3) and 30.3% (CI 11.1-52.2) respectively. In CAPTEM arm the 6-months and 12-months OS rate were 57.2% (95%34.9-74.3) and 29.0% (95%10.0-43.3). The miRNA analysis of 20 patients compared with 20 healthy subjects shows an overexpression of miRNAs involved in staminality , neo-angiogenesis and mitochontrial anaerobic glycolysis activation. CONCLUSION WP1-3 support the hypothesis that G3NECs carrying RB1 loss is associated with a DLL3 expression highlighting a potential therapeutic opportunity. Our study unfortunately didn’t met the primary end–point but the results are promising
Resumo:
In the last few years, the introduction of chimeric antigen receptor (CAR) T-cell therapy into clinical practice has revolutionized the approach to patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL), whose outcome used to be dismal with median overall survival (OS) of approximately 6 months with standard salvage therapy. At our Institute, we started treating diffuse large B-cell lymphoma (DLBCL) patients with CAR T-cell products in August 2019 and they received either axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) as per regulatory indications. This research project presents the 2-year follow-up of the first 53 treated patients. Our first aim is to investigate the feasibility of this treatment strategy in a real-world setting, although the reimbursement criteria set by the Italian Medicines Agency (Agenzia Italiana del Farmaco, AIFA) are very similar to the inclusion criteria of clinical trials and stricter than those established by the regulatory authorities of many foreign countries. One month after infusion, the ORR was 66% with 19 patients already in CR (38%). Restaging at 3, 6 and 12 months post-infusion shows that early CRs tend to be maintained over time and, moreover, that a considerable number of PRs and a few SDs can improve into a CR. The safety data were consistent with what is reported in the literature; toxicity was generally manageable, largely due to the increasing expertise in handling the specific adverse events related to CAR T-cell therapy. Our results confirms that CAR T-cell therapy is both safe and effective in a real-life setting and that it represents a crucial weapon in a subset of patients who were previously doomed to an inevitably severe prognosis.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.