2 resultados para Health Information Infrastructure
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Pain is a highly complex phenomenon involving intricate neural systems, whose interactions with other physiological mechanisms are not fully understood. Standard pain assessment methods, relying on verbal communication, often fail to provide reliable and accurate information, which poses a critical challenge in the clinical context. In the era of ubiquitous and inexpensive physiological monitoring, coupled with the advancement of artificial intelligence, these new tools appear as the natural candidates to be tested to address such a challenge. This thesis aims to conduct experimental research to develop digital biomarkers for pain assessment. After providing an overview of the state-of-the-art regarding pain neurophysiology and assessment tools, methods for appropriately conditioning physiological signals and controlling confounding factors are presented. The thesis focuses on three different pain conditions: cancer pain, chronic low back pain, and pain experienced by patients undergoing neurorehabilitation. The approach presented in this thesis has shown promise, but further studies are needed to confirm and strengthen these results. Prior to developing any models, a preliminary signal quality check is essential, along with the inclusion of personal and health information in the models to limit their confounding effects. A multimodal approach is preferred for better performance, although unimodal analysis has revealed interesting aspects of the pain experience. This approach can enrich the routine clinical pain assessment procedure by enabling pain to be monitored when and where it is actually experienced, and without the involvement of explicit communication,. This would improve the characterization of the pain experience, aid in antalgic therapy personalization, and bring timely relief, with the ultimate goal of improving the quality of life of patients suffering from pain.
Resumo:
A densely built environment is a complex system of infrastructure, nature, and people closely interconnected and interacting. Vehicles, public transport, weather action, and sports activities constitute a manifold set of excitation and degradation sources for civil structures. In this context, operators should consider different factors in a holistic approach for assessing the structural health state. Vibration-based structural health monitoring (SHM) has demonstrated great potential as a decision-supporting tool to schedule maintenance interventions. However, most excitation sources are considered an issue for practical SHM applications since traditional methods are typically based on strict assumptions on input stationarity. Last-generation low-cost sensors present limitations related to a modest sensitivity and high noise floor compared to traditional instrumentation. If these devices are used for SHM in urban scenarios, short vibration recordings collected during high-intensity events and vehicle passage may be the only available datasets with a sufficient signal-to-noise ratio. While researchers have spent efforts to mitigate the effects of short-term phenomena in vibration-based SHM, the ultimate goal of this thesis is to exploit them and obtain valuable information on the structural health state. First, this thesis proposes strategies and algorithms for smart sensors operating individually or in a distributed computing framework to identify damage-sensitive features based on instantaneous modal parameters and influence lines. Ordinary traffic and people activities become essential sources of excitation, while human-powered vehicles, instrumented with smartphones, take the role of roving sensors in crowdsourced monitoring strategies. The technical and computational apparatus is optimized using in-memory computing technologies. Moreover, identifying additional local features can be particularly useful to support the damage assessment of complex structures. Thereby, smart coatings are studied to enable the self-sensing properties of ordinary structural elements. In this context, a machine-learning-aided tomography method is proposed to interpret the data provided by a nanocomposite paint interrogated electrically.