3 resultados para Hardware Transactional Memory

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miniaturization race in the hardware industry aiming at continuous increasing of transistor density on a die does not bring respective application performance improvements any more. One of the most promising alternatives is to exploit a heterogeneous nature of common applications in hardware. Supported by reconfigurable computation, which has already proved its efficiency in accelerating data intensive applications, this concept promises a breakthrough in contemporary technology development. Memory organization in such heterogeneous reconfigurable architectures becomes very critical. Two primary aspects introduce a sophisticated trade-off. On the one hand, a memory subsystem should provide well organized distributed data structure and guarantee the required data bandwidth. On the other hand, it should hide the heterogeneous hardware structure from the end-user, in order to support feasible high-level programmability of the system. This thesis work explores the heterogeneous reconfigurable hardware architectures and presents possible solutions to cope the problem of memory organization and data structure. By the example of the MORPHEUS heterogeneous platform, the discussion follows the complete design cycle, starting from decision making and justification, until hardware realization. Particular emphasis is made on the methods to support high system performance, meet application requirements, and provide a user-friendly programmer interface. As a result, the research introduces a complete heterogeneous platform enhanced with a hierarchical memory organization, which copes with its task by means of separating computation from communication, providing reconfigurable engines with computation and configuration data, and unification of heterogeneous computational devices using local storage buffers. It is distinguished from the related solutions by distributed data-flow organization, specifically engineered mechanisms to operate with data on local domains, particular communication infrastructure based on Network-on-Chip, and thorough methods to prevent computation and communication stalls. In addition, a novel advanced technique to accelerate memory access was developed and implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analog In-memory Computing (AIMC) has been proposed in the context of Beyond Von Neumann architectures as a valid strategy to reduce internal data transfers energy consumption and latency, and to improve compute efficiency. The aim of AIMC is to perform computations within the memory unit, typically leveraging the physical features of memory devices. Among resistive Non-volatile Memories (NVMs), Phase-change Memory (PCM) has become a promising technology due to its intrinsic capability to store multilevel data. Hence, PCM technology is currently investigated to enhance the possibilities and the applications of AIMC. This thesis aims at exploring the potential of new PCM-based architectures as in-memory computational accelerators. In a first step, a preliminar experimental characterization of PCM devices has been carried out in an AIMC perspective. PCM cells non-idealities, such as time-drift, noise, and non-linearity have been studied to develop a dedicated multilevel programming algorithm. Measurement-based simulations have been then employed to evaluate the feasibility of PCM-based operations in the fields of Deep Neural Networks (DNNs) and Structural Health Monitoring (SHM). Moreover, a first testchip has been designed and tested to evaluate the hardware implementation of Multiply-and-Accumulate (MAC) operations employing PCM cells. This prototype experimentally demonstrates the possibility to reach a 95% MAC accuracy with a circuit-level compensation of cells time drift and non-linearity. Finally, empirical circuit behavior models have been included in simulations to assess the use of this technology in specific DNN applications, and to enhance the potentiality of this innovative computation approach.