5 resultados para Hand transport component

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis evaluated in vivo and in vitro enamel permeability in different physiological and clinical conditions by means of SEM inspection of replicas of enamel surface obtained from polyvinyl siloxane impressions subsequently later cast in polyether impression ma-terial. This technique, not invasive and risk-free, allows the evaluation of fluid outflow from enamel surface and is able to detect the presence of small quantities of fluid, visu-alized as droplets. Fluid outflow on enamel surface represents enamel permeability. This property has a paramount importance in enamel physiolgy and pathology although its ef-fective role in adhesion, caries pathogenesis and prevention today is still not fully under-stood. The aim of the studies proposed was to evaluate enamel permeability changes in differ-ent conditions and to correlate the findings with the actual knowledge about enamel physiology, caries pathogenesis, fluoride and etchinhg treatments. To obtain confirmed data the replica technique has been supported by others specific techniques such as Ra-man and IR spectroscopy and EDX analysis. The first study carried out visualized fluid movement through dental enamel in vivo con-firmed that enamel is a permeable substrate and demonstrated that age and enamel per-meability are closely related. Examined samples from subjects of different ages showed a decreasing number and size of droplets with increasing age: freshly erupted permanent teeth showed many droplets covering the entire enamel surface. Droplets in permanent teeth were prominent along enamel perikymata. These results obtained through SEM inspection of replicas allowed innovative remarks in enamel physiology. An analogous testing has been developed for evaluation of enamel permeability in primary enamel. The results of this second study showed that primary enamel revealed a substantive permeability with droplets covering the entire enamel sur-face without any specific localization accordingly with histological features, without changes during aging signs of post-eruptive maturation. These results confirmed clinical data that showed a higher caries susceptibility for primary enamel and suggested a strong relationship between this one and enamel permeability. Topical fluoride application represents the gold standard for caries prevention although the mechanism of cariostatic effect of fluoride still needs to be clarified. The effects of topical fluoride application on enamel permeability were evaluated. Particularly two dif-ferent treatments (NaF and APF), with different pH, were examined. The major product of topical fluoride application was the deposition of CaF2-like globules. Replicas inspec-tion before and after both treatments at different times intervals and after specific addi-tional clinical interventions showed that such globule formed in vivo could be removed by professional toothbrushing, sonically and chemically by KOH. The results obtained in relation to enamel permeability showed that fluoride treatments temporarily reduced enamel water permeability when CaF2-like globules were removed. The in vivo perma-nence of decreased enamel permeability after CaF2 globules removal has been demon-strated for 1 h for NaF treated teeth and for at least 7 days for APF treated teeth. Important clinical consideration moved from these results. In fact the caries-preventing action of fluoride application may be due, in part, to its ability to decrease enamel water permeability and CaF2 like-globules seem to be indirectly involved in enamel protection over time maintaining low permeability. Others results obtained by metallographic microscope and SEM/EDX analyses of or-thodontic resins fluoride releasing and not demonstrated the relevance of topical fluo-ride application in decreasing the demineralization marks and modifying the chemical composition of the enamel in the treated area. These data obtained in both the experiments confirmed the efficacy of fluoride in caries prevention and contribute to clarify its mechanism of action. Adhesive dentistry is the gold standard for caries treatment and tooth rehabilitation and is founded on important chemical and physical principles involving both enamel and dentine substrates. Particularly acid etching of dental enamel enamel has usually employed in bonding pro-cedures increasing microscopic roughness. Different acids have been tested in the litera-ture suggesting several etching procedures. The acid-induced structural transformations in enamel after different etching treatments by means of Raman and IR spectroscopy analysis were evaluated and these findings were correlated with enamel permeability. Conventional etching with 37% phosphoric acid gel (H3PO4) for 30 s and etching with 15 % HCl for 120 s were investigated. Raman and IR spectroscopy showed that the treatment with both hydrochloric and phosphoric acids induced a decrease in the carbonate content of the enamel apatite. At the same time, both acids induced the formation of HPO42- ions. After H3PO4 treatment the bands due to the organic component of enamel decreased in intensity, while in-creased after HCl treatment. Replicas of H3PO4 treated enamel showed a strongly reduced permeability while replicas of HCl 15% treated samples showed a maintained permeability. A decrease of the enamel organic component, as resulted after H3PO4 treatment, involves a decrease in enamel permeability, while the increase of the organic matter (achieved by HCl treat-ment) still maintains enamel permeability. These results suggested a correlation between the amount of the organic matter, enamel permeability and caries. The results of the different studies carried out in this thesis contributed to clarify and improve the knowledge about enamel properties with important rebounds in theoretical and clinical aspects of Dentistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prehension in an act of coordinated reaching and grasping. The reaching component is concerned with bringing the hand to object to be grasped (transport phase); the grasping component refers to the shaping of the hand according to the object features (grasping phase) (Jeannerod, 1981). Reaching and grasping involve different muscles, proximal and distal muscles respectively, and are controlled by different parietofrontal circuit (Jeannerod et al., 1995): a medial circuit, involving area of superior parietal lobule and dorsal premotor area 6 (PMd) (dorsomedial visual stream), is mainly concerned with reaching; a lateral circuit, involving the inferior parietal lobule and ventral premotor area 6 (PMv) (dorsolateral visual stream), with grasping. Area V6A is located in the caudalmost part of the superior parietal lobule, so it belongs to the dorsomedial visual stream; it contains neurons sensitive to visual stimuli (Galletti et al. 1993, 1996, 1999) as well as cells sensitive to the direction of gaze (Galletti et al. 1995) and cells showing saccade-related activity (Nakamura et al. 1999; Kutz et al. 2003). Area V6A contains also arm-reaching neurons likely involved in the control of the direction of the arm during movements towards objects in the peripersonal space (Galletti et al. 1997; Fattori et al. 2001). The present results confirm this finding and demonstrate that during the reach-to-grasp the V6A neurons are also modulated by the orientation of the wrist. Experiments were approved by the Bioethical Committee of the University of Bologna and were performed in accordance with National laws on care and use of laboratory animals and with the European Communities Council Directive of 24th November 1986 (86/609/EEC), recently revised by the Council of Europe guidelines (Appendix A of Convention ETS 123). Experiments were performed in two awake Macaca fascicularis. Each monkey was trained to sit in a primate chair with the head restrained to perform reaching and grasping arm movements in complete darkness while gazing a small fixation point. The object to be grasped was a handle that could have different orientation. We recorded neural activity from 163 neurons of the anterior parietal sulcus; 116/163 (71%) neurons were modulated by the reach-to-grasp task during the execution of the forward movements toward the target (epoch MOV), 111/163 (68%) during the pulling of the handle (epoch HOLD) and 102/163 during the execution of backward movements (epoch M2) (t_test, p ≤ 0.05). About the 45% of the tested cells turned out to be sensitive to the orientation of the handle (one way ANOVA, p ≤ 0.05). To study how the distal components of the movement, such as the hand preshaping during the reaching of the handle, could influence the neuronal discharge, we compared the neuronal activity during the reaching movements towards the same spatial location in reach-to-point and reach-to-grasp tasks. Both tasks required proximal arm movements; only the reach-to-grasp task required distal movements to orient the wrist and to shape the hand to grasp the handle. The 56% of V6A cells showed significant differences in the neural discharge (one way ANOVA, p ≤ 0.05) between the reach-to-point and the reach-to-grasp tasks during MOV, 54% during HOLD and 52% during M2. These data show that reaching and grasping are processed by the same population of neurons, providing evidence that the coordination of reaching and grasping takes place much earlier than previously thought, i.e., in the parieto-occipital cortex. The data here reported are in agreement with results of lesions to the medial posterior parietal cortex in both monkeys and humans, and with recent imaging data in humans, all of them indicating a functional coupling in the control of reaching and grasping by the medial parietofrontal circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.