3 resultados para HYBRID LAYERS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionizing radiations are important tools employed every day in the modern society. For example, in medicine they are routinely used for diagnostic and therapy. The large variety of applications leads to the need of novel, more efficient, low-cost ionizing radiation detectors with new functionalities. Personal dosimetry would benefit from wearable detectors able to conform to the body surfaces. Traditional semiconductors used for ionizing radiation direct detectors offer high performance but they are intrinsically stiff, brittle and require high voltages to operate. Hybrid lead-halide perovskites emerged recently as a novel class of materials for ionizing radiation detection. They combine high absorption coefficient, solution processability and high charge transport capability, enabling efficient and low-cost detection. The deposition from solution allows the fabrication of thin-film flexible devices. In this thesis, I studied the detection properties of different types of hybrid perovskites, deposited from solution in thin-film form, and tested under X-rays, gamma-rays and protons beams. I developed the first ultraflexible X-ray detector with exceptional conformability. The effect of coupling organic layers with perovskites was studied at the nanoscale giving a direct demonstration of trap passivation effect at the grain boundaries. Different perovskite formulations were deposited and tested to improve the film stability. I report about the longest aging studies on perovskite X-ray detectors showing that the addition of starch in the precursors’ solution can improve the stability in time with only a 7% decrease in sensitivity after 630 days of storage in ambient conditions. 2D perovskites were also explored as direct detector for X-rays and gamma-rays. Detection of 511 keV photons by a thin-film device is here demonstrated and was validated for monitoring a radiotracer injection. At last, a new approach has been used: a 2D/3Dmixed perovskite thin-film demonstrated to reliably detect 5 MeV protons, envisioning wearable dose monitoring during proton/hadron therapy treatments.