3 resultados para HOMO-LUMO energies

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research project is focused on the investigation of the polymorphism of crystalline molecular material for organic semiconductor applications under non-ambient conditions, and the solid-state characterization and crystal structure determination of the different polymorphic forms. In particular, this research project has tackled the investigation and characterization of the polymorphism of perylene diimides (PDIs) derivatives at high temperatures and pressures, in particular N,N’-dialkyl-3,4,9,10-perylendiimide (PDI-Cn, with n = 5, 6, 7, 8). These molecules are characterized by excellent chemical, thermal, and photostability, high electron affinity, strong absorption in the visible region, low LUMO energies, good air stability, and good charge transport properties, which can be tuned via functionalization; these features make them promising n-type organic semiconductor materials for several applications such as OFETs, OPV cells, laser dye, sensors, bioimaging, etc. The thermal characterization of PDI-Cn was carried out by a combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot-stage microscopy, and in the case of PDI-C5 also variable temperature Raman spectroscopy. Whereas crystal structure determination was carried out by both Single Crystal and Powder X-ray diffraction. Moreover, high-pressure polymorphism via pressure-dependent UV-Vis absorption spectroscopy and high-pressure Single Crystal X-ray diffraction was carried out in this project. A data-driven approach based on a combination of self-organizing maps (SOM) and principal component analysis (PCA) is also reported was used to classify different π-stacking arrangements of PDI derivatives into families of similar crystal packing. Besides the main project, in the framework of structure-property analysis under non-ambient conditions, the structural investigation of the water loss in Pt- and Pd- based vapochromic potassium/lithium salts upon temperature, and the investigation of structure-mechanical property relationships in polymorphs of a thienopyrrolyldione endcapped oligothiophene (C4-NT3N) are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the syntheses and the characterizations of several new bimetallic carbonyl clusters have been outlined. X-ray crystallography is a key technique in order to elucidate their structures which can be related to their chemical and physical properties. In particular, electrochemical studies are very useful in order to understand how the physical properties of metal aggregates change with increasing size and when the molecular behavior fades into bulk behavior. Moreover, the incipient metallization of the cluster has be assessed (not measured) via UV-vis analyses even if this technique revealed to be not very useful in order to distinguish the different species present in solution. Overall, this work demonstrates that molecular nanoclusters are ideal models in order to better understand the structures and properties of ultrasmall metal nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world grapples with climate change from fossil fuel reliance, prompting Europe to pivot to renewable energy. Among renewables, biomass is a bioenergy and bio-carbon source, used to create high-value biomolecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, hold promise as bio-additives and biofuels, especially via acid solvolysis of hexose sugars, necessitating further exploration. Alkyl levulinate's potential extends to converting into γ-valerolactone (GVL), a bio-solvent produced via hydrogenation with molecular-hydrogen. Hydrogen, a key reagent and energy carrier, aids renewable energy integration. This thesis delves into a biorefinery system study, aligning with sustainability goals, integrating biomass valorization, energy production, and hydrogen generation. It investigates optimizing technologies for butyl levulinate production and subsequent GVL hydrogenation. Sustainability remains pivotal, reflecting the global shift towards renewable and carbon bio-resources. The research initially focuses on experimenting with the optimal technology for producing butyl levulinate from biomass-derived hexose fructose. It examines the solvolysis process, investigating optimal conditions, kinetic modeling, and the impact of solvents on fructose conversion. The subsequent part concentrates on the technological aspect of hydrogenating butyl levulinate into GVL. It includes conceptual design, simulation, and optimization of the fructose-to-GVL process scheme based on process intensification. In the final part, the study applies the process to a real case study in Normandy, France, adapting it to local biomass availability and wind energy. It defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. Sustainability assessment using economic, environmental, and social indicators culminates in an overall sustainability index, indicating scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising due to high profitability and reduced environmental impact. Sensitivity analyses validate the methodology's reliability, potentially extending to other technological systems.