5 resultados para HIGH-TEMPERATURE PEMFCS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The increasingly strict regulations on greenhouse gas emissions make the fuel economy a pressing factor for automotive manufacturers. Lightweighting and engine downsizing are two strategies pursued to achieve the target. In this context, materials play a key role since these limit the engine efficiency and components weight, due to their acceptable thermo-mechanical loads. Piston is one of the most stressed engine components and it is traditionally made of Al alloys, whose weakness is to maintain adequate mechanical properties at high temperature due to overaging and softening. The enhancement in strength-to-weight ratio at high temperature of Al alloys had been investigated through two approaches: increase of strength at high temperature or reduction of the alloy density. Several conventional and high performance Al-Si and Al-Cu alloys have been characterized from a microstructural and mechanical point of view, investigating the effects of chemical composition, addition of transition elements and heat treatment optimization, in the specific temperature range for pistons operations. Among the Al-Cu alloys, the research outlines the potentialities of two innovative Al-Cu-Li(-Ag) alloys, typically adopted for structural aerospace components. Moreover, due to the increased probability of abnormal combustions in high performance spark-ignition engines, the second part of the dissertation deals with the study of knocking damages on Al pistons. Thanks to the cooperation with Ferrari S.p.A. and Fluid Machinery Research Group - Unibo, several bench tests have been carried out under controlled knocking conditions. Knocking damage mechanisms were investigated through failure analyses techniques, starting from visual analysis up to detailed SEM investigations. These activities allowed to relate piston knocking damage to engine parameters, with the final aim to develop an on-board knocking controller able to increase engine efficiency, without compromising engine functionality. Finally, attempts have been made to quantify the knock-induced damages, to provide a numerical relation with engine working conditions.
Resumo:
The first main conclusion drawn from this dissertation concerns the amount of Pt deposited on the asymmetric layer of membrane produced by tape casting porosity shaping method. Three different amounts were investigated (0.15, 1.5 and 4.5 mg cm-2 ). The most optimal performance, based on H2 permeation performances, was attained when 1.5 mg cm-2 of Pt was deposited on the porous layer, resulting in a 0.642 mL min-1 cm-2 permeated H2 when 80% H2 in He was employed as the feed. Pt deposition method is influenced by the concentration of the Pt precursor, which results in different morphology of the catalyst. The second development focused on further optimization on tape casting membranes concerning the solvent employed for the Pt catalyst deposition. The same concentration of Pt was employed, depositing 1.5 mg cm-2 on the porous side of the membrane, but a mixture of acetone and water was employed as solvent. This mixture allowed the suppression of effects leading to poorly dispersed particles. As a result, it was possible to achieve 0.74 mL min-1 cm-2 at 750°C with 50% H2 in He. Lastly, first-ever permeation performance measurements into an innovative ceramic membrane type for hydrogen separation was investigated. In-depth research was done on a group of hierarchically-structured BaCe0.65Zr0.20Y0.15O3-δ(BCZY) - Gd0.2Ce0.8O2-δ(GDC) membranes produced by freeze casting porosity shaping method. Membranes were investigated observing the effect of deposition solvent and the effect of porous layer thickness. Employing a mixture of Acetone and water resulted in better hydrogen permeation at temperatures (T > 650°C), reaching 0.26 mL min-1 cm-2 at 750°C with 50% H2 in He. The reduction of porous layer thickness led to a hydrogen flow of 0.33 mL min-1 cm-2 , at 750°C with 50% H2 in He.
Resumo:
This PhD thesis describes set up of technological models for obtaining high health value foods and ingredients that preserve the final product characteristics as well as enrich with nutritional components. In particular, the main object of my research has been Virgin Olive Oil (VOO) and its important antioxidant compounds which differentiate it from all other vegetables oils. It is well known how the qualitative and quantitative presence of phenolic molecules extracted from olives during oil production is fundamental for its oxidative and nutritional quality. For this purpose, agronomic and technological conditions of its production have been investigated. It has also been examined how this fraction can be better preserved during storage. Moreover, its relation with VOO sensorial characteristics and its interaction with a protein in emulsion foods have also been studied. Finally, an experimental work was carried out to determine the antioxidative and heat resistance properties of a new antioxidant (EVS-OL) when used for high temperature frying such as is typically employed for the preparation of french fries. Results of the scientific research have been submitted for a publication and some data has already been published in national and international scientific journals.
Resumo:
The Mediterranean Sea is expected to react faster to global change compared to the ocean and is already showing more pronounced warming and acidification rates. A study performed along the Italian western coast showed that porosity of the skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular algae named zooxanthellae) solitary scleractinian Balanophyllia europaea while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia pruvoti. These results were confirmed by another study that indicated that the increase in porosity was accompanied by an increase of the fraction of the largest pores in the pore-space, perhaps due to an inhibition of the photosynthetic process at elevated temperatures, causing an attenuation of calcification. B. europaea, L. pruvoti and the colonial non-zooxanthellate Astroides calycularis, transplanted along a natural pH gradient, showed that high temperature exacerbated the negative effect of lowered pH on their mortality rates. The growth of the zooxanthellate species did not react to reduced pH, while the growth of the two non-zooxanthellate species was negatively affected. Reduced abundance of naturally occurring B. europaea, a mollusk, a calcifying and a non-calcifying macroalgae were observed along the gradient while no variation was seen in the abundance of a calcifying green alga. With decreasing pH, the mineralogy of the coral and mollusk did not change, while the two calcifying algae decreased the content of aragonite in favor of the less soluble calcium sulphates and whewellite (calcium oxalate), possibly as a mechanism of phenotypic plasticity. Increased values of porosity and macroporosity with CO2 were observed in B. europaea specimens, indicating reduces the resistance of its skeletons to mechanical stresses with increasing acidity. These findings, added to the negative effect of temperature on various biological parameters, generate concern on the sensitivity of this zooxanthellate species to the envisaged global climate change scenarios.
Resumo:
Nowadays, electrical machines are seeing an ever-increasing development and extensive research is currently being dedicated to the improvement of their efficiency and torque/power density. Compared to conventional random windings, hairpin winding inherently features lower DC resistance, higher fill factor, better thermal performance, improved reliability, and an automated manufacturing process. However, several challenges need to be addressed, including electromagnetic, thermal, and manufacturing aspects. Of these, the high ohmic losses at high-frequency operations due to skin and proximity effects are the most severe, resulting in low efficiency or high-temperature values. In this work, the hairpin winding challenges were highlighted at high-frequency operations and at showing the limits of applicability of these standard approaches. Afterward, a multi-objective design optimization is proposed aiming to enhance the exploitation of the hairpin technology in electrical machines. Efficiency and volume power density are considered as main design objectives. Subsequently, a changing paradigm is made for the design of electric motors equipped with hairpin windings, where it is proven that a temperature-oriented approach would be beneficial when designing this type of pre-formed winding. Furthermore, the effect of the rotor topology on AC losses is also considered. After providing design recommendations and FE electromagnetic and thermal evaluations, experimental tests are also performed for validation purposes on a motorette wound with pre-formed conductors. The results show that operating the machine at higher temperatures could be beneficial to efficiency, particularly in high-frequency operations where AC losses are higher at low operating temperatures. The last part of the thesis focuses on comparing the main electromagnetic performance metrics for a conventional hairpin winding, wound onto a benchmark stator with a semi-closed slot opening design, and a continuous hairpin winding, in which the slot opening is open. Lastly, the adoption of semi-magnetic slot wedges is investigated to improve the overall performance of the motor.