9 resultados para HIF
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.
Resumo:
Recenti analisi sull’intero trascrittoma hanno rivelato una estensiva trascrizione di RNA non codificanti (ncRNA), le quali funzioni sono tuttavia in gran parte sconosciute. In questo lavoro è stato dimostrato che alte dosi di camptotecina (CPT), un farmaco antitumorale inibitore della Top1, aumentano la trascrizione di due ncRNA antisenso in 5’ e 3’ (5'aHIF-1α e 3'aHIF-1α rispettivamente) al locus genico di HIF-1α e diminuiscono i livelli dell’mRNA di HIF-1α stesso. Gli effetti del trattamento sono Top1-dipendenti, mentre non dipendono dal danno al DNA alla forca di replicazione o dai checkpoint attivati dal danno al DNA. I ncRNA vengono attivati in risposta a diversi tipi di stress, il 5'aHIF-1α è lungo circa 10 kb e possiede sia il CAP in 5’ sia poliadenilazione in 3’ (in letteratura è noto che il 3'aHIF-1α è un trascritto di 1,7 kb, senza 5’CAP né poliadenilazione). Analisi di localizzazione intracellulare hanno dimostrato che entrambi sono trascritti nucleari. In particolare 5'aHIF-1α co-localizza con proteine del complesso del poro nucleare, suggerendo un suo possibile ruolo come mediatore degli scambi della membrana nucleare. È stata dimostrata inoltre la trascrizione dei due ncRNA in tessuti di tumore umano del rene, evidenziandone possibili ruoli nello sviluppo del cancro. È anche noto in letteratura che basse dosi di CPT in condizioni di ipossia diminuiscono i livelli di proteina di HIF-1α. Dopo aver dimostrato su diverse linee cellulari che i due ncRNA sopracitati non potessero essere implicati in tale effetto, abbiamo studiato le variazioni dell’intero miRnoma alle nuove condizioni sperimentali. In tal modo abbiamo scoperto che il miR-X sembra essere il mediatore molecolare dell’abbattimento di HIF-1α dopo trattamento con basse dosi di CPT in ipossia. Complessivamente, questi risultati suggeriscono che il fattore di trascrizione HIF-1α venga finemente regolato da RNA non-codificanti indotti da danno al DNA.
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
During my PhD I have been involved in several projects regarding the morphogenesis of the follicular epithelium, such as the analysis of the pathways that correlate follicular epithelium patterning and eggshell genes expression. Moreover, I used the follicular epithelium as a model system to analyze the function of the Drosophila homolog of the human von Hippel-Lindau (d-VHL) during oogenesis, in order to gain insight into the role of h-VHL for the pathogenesis of VHL disease. h-VHL is implicated in a variety of processes and there is now a greater appreciation of HIF-independent h-VHL functions that are relevant to tumour development, including maintenance and organization of the primary cilium, maintenance of the differentiated phenotype in renal cells and regulation of epithelial-mesenchymal transition. However, the function of h-VHL gene during development has not been fully understood. It was previously shown that d-VHL down-regulates the motility of tubular epithelial cells (tracheal cells) during embryogenesis. Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. Therefore, to examine whether d-VHL has a role in epithelial morphogenesis and maintenance, I performed genetic and molecular analyses by using in vivo and in vitro approaches. From my analysis, I determined that d-VHL binds to and stabilizes microtubules. Loss of d-VHL depolymerizes the microtubule network during oogenesis, leading to a possible deregulation in the subcellular trafficking transport of polarity markers from Golgi apparatus to the different domains in which follicle cells are divided. The analysis carried out has allowed to establish a significant role of d-VHL in the maintenance of the follicular epithelium integrity.
Resumo:
The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5’aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3’ end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the “Topo-Seq” approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5’ and 3’ ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3’ ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5’ ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.
Resumo:
Hypoxia-inducible factor-1 alpha (HIF-1α) plays a critical role in survival and is associated with poor prognosis in solid tumors. The role of HIF-1α in multiple myeloma is not completely known. In the present study, we explored the effect of EZN2968, an locked nucleic acid antisense oligonucleotide against HIF-1α, as a molecular target in MM. A panel of MM cell lines and primary samples from MM patients were cultured in vitro in the presence of EZN2968 . Under normoxia culture condition, HIF-1α mRNA and protein expression was detectable in all MM cell lines and in CD138+ cells from newly diagnosed MM patients samples. Significant up-regulation of HIF-1α protein expression was observed after incubation with IL6 or IGF-I, confirming that HIF-1α can be further induced by biological stimuli. EZN2968 efficiently induces a selective and stable down-modulation of HIF-1α and decreased the secretion of VEGF released by MM cell. Treatment with EZN2968 gave rise to a progressive accumulation of cells in the S and subG0 phase. The analysis of p21, a cyclin-dependent kinase inhibitors controlling cell cycle check point, shows upregulation of protein levels. These results suggest that HIF-1α inhibition is sufficient for cell cycle arrest in normoxia, and for inducing an apoptotic pathways.. In the presence of bone marrow microenvironment, HIF-1α inhibition blocks MAPK kinase pathway and secretion of pro-surviaval cytokines ( IL6,VEGF,IL8) In this study we provide evidence that HIF-1α, even in the absence of hypoxia signal, is expressed in MM plasma cells and further inducible by bone marrow milieu stimuli; moreover its inhibition is sufficient to induce a permanent cell cycle arrest. Our data support the hypothesis that HIF-1α inhibition may suppress tumor growth by preventing proliferation of plasma cells through p21 activation and blocking pro-survival stimuli from bone marrow microenvironment.
Resumo:
Mitochondria have a central role in energy supply in cells, ROS production and apoptosis and have been implicated in several human disease and mitochondrial dysfunctions in hypoxia have been related with disorders like Type II Diabetes, Alzheimer Disease, inflammation, cancer and ischemia/reperfusion in heart. When oxygen availability becomes limiting in cells, mitochondrial functions are modulated to allow biologic adaptation. Cells exposed to a reduced oxygen concentration readily respond by adaptive mechanisms to maintain the physiological ATP/ADP ratio, essential for their functions and survival. In the beginning, the AMP-activated protein kinase (AMPK) pathway is activated, but the responsiveness to prolonged hypoxia requires the stimulation of hypoxia-inducible factors (HIFs). In this work we report a study of the mitochondrial bioenergetics of primary cells exposed to a prolonged hypoxic period . To shine light on this issue we examined the bioenergetics of fibroblast mitochondria cultured in hypoxic atmospheres (1% O2) for 72 hours. Here we report on the mitochondrial organization in cells and on their contribution to the cellular energy state. Our results indicate that prolonged hypoxia cause a significant reduction of mitochondrial mass and of the quantity of the oxidative phosphorylation complexes. Hypoxia is also responsible to damage mitochondrial complexes as shown after normalization versus citrate synthase activity. HIF-1α plays a pivotal role in wound healing, and its expression in the multistage process of normal wound healing has been well characterized, it is necessary for cell motility, expression of angiogenic growth factor and recruitment of endothelial progenitor cells. We studied hypoxia in the pathological status of diabetes and complications of diabetes and we evaluated the combined effect of hyperglycemia and hypoxia on human dermal fibroblasts (HDFs) and human dermal micro-vascular endothelial cells (HDMECs) that were grown in high glucose, low glucose concentrations and mannitol as control for the osmotic challenge.
Resumo:
Lo sviluppo e la funzionalità della placenta influenzano direttamente la crescita ed il benessere del feto all'interno dell'utero, quindi qualsiasi problema strutturale o funzionale della placenta influenzerà lo sviluppo del feto. Lo scopo di questa tesi è stato quello di approfondire diversi aspetti clinici e clinico-patologici dell’insufficienza placentare nella specie equina, con l’intento di individuare dei parametri che possano essere di ausilio per l’identificazione precoce del puledro a rischio e della necessità di interventi terapeutici. La valutazione della concentrazione di lattato nel sangue e nel liquido amniotico potrebbe essere un utile strumento diagnostico per la diagnosi di acidosi metabolica associata ad ipossia/ischemia nel puledro e per identificare la necessità di un intervento precoce alla nascita. La risposta all’ipossia sembra essere mediata dall’HIF-1 e dall’HSF-1 anche nel puledro neonato, e se questi dati venissero confermati su un numero maggiore di animali, i due marcatori proteici e la MDA potrebbero essere utilizzati per la diagnosi di PAS nel puledro. L’esame di tutta l’unità placentare riveste un ruolo di fondamentale importanza per l’acquisizione di informazioni riguardo all’ambiente di vita intrauterino del puledro, ed è quindi auspicabile nella pratica ostetrica routinaria una maggiore attenzione all’esame della placenta, soprattutto in caso di patologie materno-fetali. Tra i parametri biochimici valutati al momento della nascita, la creatininemia e la glicemia possono fornire informazioni sull’efficienza dello scambio placentare ed essere quindi utilizzati per individuare puledri a rischio. Infine, lo sviluppo di una macro per il software ImageJ porta alla luce uno strumento nuovo, semplice da usare ed economico, per la valutazione morfometrica dell’arborizzazione dei villi placentari; tuttavia la ricerca necessità ulteriori indagini su un numero maggiore di animali per valutare le differenze morfometriche tra placente normali e patologiche.
Resumo:
Riconosciuto il problema dell’accesso ai farmaci come un problema di giustizia globale, la dissertazione, da un lato, è incentrata sullo studio dei diritti umani e sul diritto alla salute da una prospettiva giusfilosofica e, dall’altro, è finalizzata ad analizzare la disciplina brevettuale internazionale, sia approfondendo gli interessi realmente in gioco, sia studiando la struttura economica del brevetto stesso. Si è cercato quindi di guardare a tali interessi da una nuova prospettiva, ipotizzando una gerarchia di valori che sia completa e coerente con gli obiettivi che la dottrina, la giurisprudenza, nonché il diritto internazionale formalmente enunciano. Il progetto di ricerca vuole, in definitiva, arrivare a proporre nuove soluzioni giuridiche al problema dell’accesso ai farmaci. La dissertazione svolge pertanto uno studio critico della proposta di Thomas Pogge, di natura politica e giuridica e sorretta da istanze filosofiche, volta alla soluzione del problema dell’accesso ai farmaci, i.e. l’Health Impact Fund (HIF). Proposta che pone radicalmente in discussione, anche concretamente, il dogma del monopolio concesso con la privativa quale ricompensa per i costi di R&D sostenuti dai titolari dei brevetti e che pone, invece, l’accento sull’effettivo impatto sulla salute globale di ogni singola invenzione. Analizzandone approfonditamente gli aspetti più rilevanti, si passano poi in rassegna, criticamente, le proposte, alternative o di riforma, del sistema di proprietà intellettuale, volte al miglioramento dell’accesso ai farmaci; a tal proposito, si propone quindi una riforma transitoria della disciplina brevettuale, c.d. Trading Time for Space (TTS), che prevede un allungamento temporale dell’esclusiva brevettuale (Time) in cambio della vendita da parte del titolare della privativa del farmaco ad un prezzo accessibile nei Paesi in via di sviluppo (Space).