3 resultados para HEISENBERG PYROCHLORE ANTIFERROMAGNET
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The thesis mainly concerns the study of intrinsically regular submanifolds of low codimension in the Heisenberg group H^n, called H-regular surfaces of low codimension, from the point of view of geometric measure theory. We consider an H-regular surface of H^n of codimension k, with k between 1 and n, parametrized by a uniformly intrinsically differentiable map acting between two homogeneous complementary subgroups of H^n, with target subgroup horizontal of dimension k. In particular the considered submanifold is the intrinsic graph of the parametrization. We extend various results of Ambrosio, Serra Cassano and Vittone, available for the case when k = 1. We prove that the uniform intrinsic differentiability of the parametrizing map is equivalent to the existence and continuity of its intrinsic differential, to the local existence of a suitable approximating family of Euclidean regular maps, and, when the domain and the codomain of the map are orthogonal, to the existence and continuity of suitably defined intrinsic partial derivatives of the function. Successively, we present a series of area formulas, proved in collaboration with V. Magnani. They allow to compute the (2n+2−k)-dimensional spherical Hausdorff measure and the (2n+2−k)-dimensional centered Hausdorff measure of the parametrized H-regular surface, with respect to any homogeneous distance fixed on H^n. Furthermore, we focus on (G,M)-regular sets of G, where G and M are two arbitrary Carnot groups. Suitable implicit function theorems ensure the local existence of an intrinsic parametrization of such a set, at any of its points. We prove that it is uniformly intrinsically differentiable. Finally, we prove a coarea-type inequality for a continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. We assume that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu differential is everywhere surjective.
Resumo:
In the present thesis, we discuss the main notions of an axiomatic approach for an invariant Harnack inequality. This procedure, originated from techniques for fully nonlinear elliptic operators, has been developed by Di Fazio, Gutiérrez, and Lanconelli in the general settings of doubling Hölder quasi-metric spaces. The main tools of the approach are the so-called double ball property and critical density property: the validity of these properties implies an invariant Harnack inequality. We are mainly interested in the horizontally elliptic operators, i.e. some second order linear degenerate-elliptic operators which are elliptic with respect to the horizontal directions of a Carnot group. An invariant Harnack inequality of Krylov-Safonov type is still an open problem in this context. In the thesis we show how the double ball property is related to the solvability of a kind of exterior Dirichlet problem for these operators. More precisely, it is a consequence of the existence of some suitable interior barrier functions of Bouligand-type. By following these ideas, we prove the double ball property for a generic step two Carnot group. Regarding the critical density, we generalize to the setting of H-type groups some arguments by Gutiérrez and Tournier for the Heisenberg group. We recognize that the critical density holds true in these peculiar contexts by assuming a Cordes-Landis type condition for the coefficient matrix of the operator. By the axiomatic approach, we thus prove an invariant Harnack inequality in H-type groups which is uniform in the class of the coefficient matrices with prescribed bounds for the eigenvalues and satisfying such a Cordes-Landis condition.
Resumo:
Effective field theories (EFTs) are ubiquitous in theoretical physics and in particular in field theory descriptions of quantum systems probed at energies much lower than one or few characterizing scales. More recently, EFTs have gained a prominent role in the study of fundamental interactions and in particular in the parametriasation of new physics beyond the Standard Model, which would occur at scales Λ, much larger than the electroweak scale. In this thesis, EFTs are employed to study three different physics cases. First, we consider light-by-light scattering as a possible probe of new physics. At low energies it can be described by dimension-8 operators, leading to the well-known Euler-Heisenberg Lagrangian. We consider the explicit dependence of matching coefficients on type of particle running in the loop, confirming the sensitiveness to the spin, mass, and interactions of possibly new particles. Second, we consider EFTs to describe Dark Matter (DM) interactions with SM particles. We consider a phenomenologically motivated case, i.e., a new fermion state that couples to the Hypercharge through a form factor and has no interactions with photons and the Z boson. Results from direct, indirect and collider searches for DM are used to constrain the parameter space of the model. Third, we consider EFTs that describe axion-like particles (ALPs), whose phenomenology is inspired by the Peccei-Quinn solution to strong CP problem. ALPs generically couple to ordinary matter through dimension-5 operators. In our case study, we investigate the rather unique phenomenological implications of ALPs with enhanced couplings to the top quark.