8 resultados para HEDGEHOG

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mental retardation in Down syndrome (DS) has been imputed to the decreased brain volume, which is evident starting from the early phases of development. Recent studies in a widely used mouse model of DS, the Ts65Dn mouse, have shown that neurogenesis is severely impaired during the early phases of brain development, suggesting that this defect may be a major determinant of brain hypotrophy and mental retardation in individuals with DS. Recently, it has been found that in the cerebellum of Ts65Dn mice there is a defective responsiveness to Sonic Hedgehog (Shh), a potent mitogen that controls cell division during brain development, suggesting that failure of Shh signaling may underlie the reduced proliferation potency in DS. Based on these premises, we sought to identify the molecular mechanisms underlying derangement of the Shh pathway in neural precursor cells (NPCs) from Ts65Dn mice. We found that the expression levels of the Shh receptor Patched1 (Ptch1) were increased compared to controls both at the RNA and protein level. Partial silencing of Ptch1 expression in trisomic NPCs restored cell proliferation, indicating that proliferation impairment was due to Ptch1 overexpression. We further found that the overexpression of Ptch1 in trisomic NPCs is related to increased levels of AICD, a transcription-promoting fragment of amyloid precursor protein (APP). Increased AICD binding to the Ptch1 promoter favored its acetylated status, thus enhancing Ptch1 expression. Taken together, these data provide novel evidence that Ptch1 over expression underlies derangement of the Shh pathway in trisomic NPCs, with consequent proliferation impairment. The demonstration that Ptch1 over expression in trisomic NPCs is due to an APP fragment provides a link between this trisomic gene and the defective neuronal production that characterizes the DS brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal Hedgehog signaling is associated with human malignancies. Smo, a key player of that signaling, is the most suitable target to inhibit this pathway. To this aim several molecules, antagonists of Smo, have been synthesized, and some of them have started the phase I in clinical trials. Our hospital participated to one of these studies which investigated the oral administration of a new selective inhibitor of Smo (SMOi). To evaluate ex vivo SMOi efficacy and to identify new potential clinical biomarkers of responsiveness, we separated bone marrow CD34+ cells from 5 acute myeloid leukemia (AML), 1 myelofibrosis (MF), 2 blastic phases chronic myeloid leukemia (CML) patients treated with SMOi by immunomagnetic separation, and we analysed their gene expression profile using Affimetrix HG-U133 Plus 2.0 platform. This analysis, showed differential expression after 28 days start of therapy (p-value ≤ 0.05) of 1,197 genes in CML patients and 589 genes in AML patients. This differential expression is related to Hedgehog pathway with a p-value = 0.003 in CML patients and with a p-value = 0.0002 in AML patients, suggesting that SMOi targets specifically this pathway. Among the genes differentially expressed we observed strong up-regulation of Gas1 and Kif27 genes, which may work as biomarkers of responsiveness of SMOi treatment in CML CD34+ cells whereas Hedgehog target genes (such as Smo, Gli1, Gli2, Gli3), Bcl2 and Abca2 were down-regulated, in both AML and CML CD34+ cells. It has been reported that Bcl-2 expression could be correlated with cancer therapy resistance and that Hedgehog signaling modulate ATP-binding (ABC) cassette transporters, whose expression has been correlated with chemoresistance. Moreover we confirmed that in vitro SMOi treatment targets Hedgehog pathway, down-regulate ABC transporters, Abcg2 and Abcb1 genes, and in combination with tyrosine kinase inhibitors (TKIs) could revert the chemoresistance mechanism in K562 TKIs-resistant cell line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Leukemias, recent developments have demonstrated that the Hedgehog pathway plays a key-role in the peculiar ability of self renewal of leukemia stem cells. The aim of this research activity was to investigate, through a first in man, Phase I, open label, clinical trial, the role and the impact, mainly in terms of safety profile, adverse events and pharmacokinetics, of a Sonic Hedgehog inhibitor compound on a population of heavely pretreated patients affected by AML, CML, MF, or MDS, resistant or refractory to standard chemotherapy. Thirty-five patients have been enrolled. The drug was administered orally, in 28 days cycles, without rest periods. The compound showed a good safety profile. The half life was of 17-35 hours, justifying the daily administration. Significant signs of activity, in terms of reduction of bone marrow blast cell amount were seen in most of the patients enrolled. Interestingly, correlative biological studies demonstrated that, comparing the gene expression profyiling signature of separated CD34+ cells before and after one cycle of treatment, the most variably expressed genes were involved in the Hh pathway. Moreover, we observed that many genes involved in MDR (multidrug resistance)were significantly down regulated after treatment. These data might lead to future clinical trials based on combinatory approaches, including, for instance, Hh inhibitors and conventional chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Human small cell lung cancer (SCLC) accounting for approximately 15-20% of all lung cancers, is an aggressive tumor with high propensity for early regional and distant metastases. Although the initial tumor rate response to chemotherapy is very high, SCLC relapses after approximately 4 months in ED and 12 months in LD. Basal cell carcinoma (BCC) is the most prevalent cancer in the western world, and its incidence is increasing worldwide. This type of cancer rarely metastasizes and the death rate is extraordinary low. Surgery is curative for most of the patients, but for those that develop locally advanced or metastatic BCC there is currently no effective treatment. Both types of cancer have been deeply investigated and genetic alterations, MYCN amplification (MA) among the most interesting, have been found. These could become targets of new pharmacological therapies. Procedures. We created and characterized novel BLI xenograft orthotopic mouse models of SCLC to evaluate the tumor onset and progression and the efficacy of new pharmacological strategies. We compared an in vitro model with a transgenic mouse model of BCC, to investigate and delineate the canonical HH signalling pathway and its connections with other molecular pathways. Results and conclusions. The orthotopic models showed latency and progression patterns similar to human disease. Chemotherapy treatments improved survival rates and validated the in vivo model. The presence of MA and overexpression were confirmed in each model and we tested the efficacy of a new MYCN inhibitor in vitro. Preliminar data of BCC models highlighted Hedgehog pathway role and underlined the importance of both in vitro and in vivo strategies to achieve a better understanding of the pathology and to evaluate the applicability of new therapeutic compounds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence of Multiple Myeloma Stem cells (MMSCs)is supposed to be one of the major causes of MM drug-resistance. However, very little is known about the molecular characteristics of MMSCs, even if some studies suggested that these cells resembles the memory B cells. In order to molecularly characterize MMSCs, we isolated the 138+138- population. For each cell fraction we performed a VDJ rearrangement analysis. The complete set of aberrations were performed by SNP Array 6.0 and HG-U133 Plus 2.0 microarray analyses (Affymetrix). The VDJ rearrangement analyses confirmed the clonal relationship between the 138+ clone and the immature clone. Both BM and PBL 138+ clones showed exactly the same genomic macroalterations. In the BM and PBL 138-19+27+ cell fractions several micro-alterations (range: 1-350 Kb) unique of the memory B cells clone were highlighted. Any micro-alterations detected were located out of any genomic variants region and are presumably associated to the MM pathogenesis, as confirmed by the presence of KRAS, WWOX and XIAP genes among the amplified regions. To get insight into the biology of the clonotypic B cell population, we compared the gene expression profile of 8 MM B cells samples 5 donor B cells vs, thus showing a differential expression of 11480 probes (p-value: <0,05). Among the self-renewal mechanisms, we observed the down-regulation of Hedgehog pathway and the iperactivation of Notch and Wnt signaling. Moreover, these immature cells showed a particular phenotype correlated to resistance to proteasome inhibitors (IRE1α-XBP1: -18.0; -19.96. P<0,05). Data suggested that the MM 138+ clone might resume the end of the complex process of myelomagenesis, whereas the memory B cells have some intriguing micro-alterations and a specific transcriptional program, supporting the idea that these post germinal center cells might be involved in the transforming event that originate and sustain the neoplastic clone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chronic myeloid leukemia complexity and the difficulties of disease eradication have recently led to the development of drugs which, together with the inhibitors of TK, could eliminate leukemia stem cells preventing the occurrence of relapses in patients undergoing transplantation. The Hedgehog (Hh) signaling pathway positively regulates the self-renewal and the maintenance of leukemic stem cells and not, and this function is evolutionarily conserved. Using Drosophila as a model, we studied the efficacy of the SMO inhibitor drug that inhibit the human protein Smoothened (SMO). SMO is a crucial component in the signal transduction of Hh and its blockade in mammals leads to a reduction in the disease induction. Here we show that administration of the SMO inhibitor to animals has a specific effect directed against the Drosophila ortholog protein, causing loss of quiescence and hematopoietic precursors mobilization. The SMO inhibitor induces in L3 larvae the appearance of melanotic nodules generated as response by Drosophila immune system to the increase of its hemocytes. The same phenotype is induced even by the dsRNA:SMO specific expression in hematopoietic precursors of the lymph gland. The drug action is also confirmed at cellular level. The study of molecular markers has allowed us to demonstrate that SMO inhibitor leads to a reduction of the quiescent precursors and to an increase of the differentiated cells. Moreover administering the inhibitor to heterozygous for a null allele of Smo, we observe a significant increase in the phenotype penetrance compared to administration to wild type animals. This helps to confirm the specific effect of the drug itself. These data taken together indicate that the study of inhibitors of Smo in Drosophila can represent a useful way to dissect their action mechanism at the molecular-genetic level in order to collect information applicable to the studies of the disease in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il locus CYYR1 identificato e clonato sul cromosoma 21 umano è stato caratterizzato dal punto di vista molecolare come un sistema multitrascritto, esclusivo dei vertebrati che ad oggi è orfano di una funzione specifica. Dati presenti in lettura e rintracciati mostrano una possibile relazione tra il gene CYYR1 e il pathway di Sonic Hedgehog (SHH). In questo progetto di tesi è stato utilizzato il modello animale Danio rerio per indagare il ruolo funzionale dell’ortologo (cyyr1), attraverso esperimenti di gain e loss of function che hanno permesso di dimostrare un suo coinvolgimento nello sviluppo del sistema nervoso centrale, del cuore e del tessuto muscolare. Lo studio dell’ortologo in zebrafish è stato associato all’utilizzo di linee cellulari di rabdomiosarcoma umano. I risultati ottenuti dall’induzione al differenziamento miogenico di queste linee, insieme ai dati ottenuti in Danio rerio, confermano il possibile coinvolgimento del gene CYYR1 nella miogenesi. Lo studio delle relazione tra il pathway di SHH e l’espressione del gene CYYR1 è stato condotto in entrambi i modelli con l’utilizzo di differenti inibitori della via di segnalazione. I risultati ottenuti mostrano che sistemi inibitori agenti direttamente sul recettore SMO riducono l’espressione del gene. Un dato inaspettato in Danio rerio ottenuto durante questi esperimenti di inibizione, ha aperto una nuova linea di ricerca in collaborazione con l’Università di Warwick tesa a verificare la relazione tra il gene cyyr1 e il gene lefty1. Gli esperimenti condotti presso il laboratorio della Prof.ssa Sampath hanno dimostrato la localizzazione del prodotto proteico cyyr1 in Danio rerio e indagato co-localizzazioni con la proteina lefty1. Infine, in collaborazione con Dr. Deflorian e della Prof.ssa Pistocchi, è stato generato un mutante di Danio rerio deleto per il gene cyyr1 con la tecnica CRISPR/Cas9. La caratterizzazione del mutante cyyr1 -/- ha confermato alcuni dei dati ottenuti attraverso esperimenti di loss of function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zyxin is a phosphoprotein localized at the focal adhesions and on the actin stress fibres, where it regulates the cytoskeleton organization. In addition, zyxin can shift into the nucleus and modulates the gene expression, affecting key cellular processes. Consequently, zyxin is as a crucial factor in the malignancy of several cancers, like Ewing sarcoma (EWS). EWS is a rare tumour of the bones, affecting children and adolescents. The main features of EWS are the presence of a chimeric transcriptional factor, EWS-FLI1 and the high expression of CD99, a glycoprotein necessary for the maintenance of the malignant phenotype. Triggering of CD99 with specific antibodies causes massive cell death, an effect that requires zyxin presence. In EWS zyxin is repressed by EWS-FLI1 and its forced re-expression counteracts the malignant phenotype. In this work we decided to deepen our knowledge on how zyxin affects EWS malignancy. We proved that zyxin is a negative regulator of cell migration, survival and growth in anchorage-independent conditions, confirming the tumour suppressor role of zyxin. Then we focused on the relation between CD99 and zyxin. Loss of function of CD99, by engagement with specific antibodies or use of shRNA, increases zyxin levels and promotes its nuclear translocation. Here, we observed that zyxin impairs the transcriptional activity of the Glioma associated oncogene 1 (Gli1), a member of the Hedgehog signalling pathway, which has a relevant oncogenic function in EWS. To support these evidences, we also reported that the loss of function of CD99 inhibits, trough zyxin mediation, the expression of Gli1 up-regulated target genes, such as NKX2-2, PTCH1 and cyclins, whilst enhances the expression of its down-regulated target GAS1. In conclusion, we presented a more accurate depiction of zyxin role in EWS, which in the future could be further developed in hope to offer new therapeutic approaches.