7 resultados para HEAT-SHOCK PROTEIN-25
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Helicobacter pylori, un patogeno umano in grado di colonizzare la nicchia gastrica, è associato a patologie del tratto gastrointestinale di varia gravità. Per sopravvivere nell’ambiente ostile dello stomaco dell’ospite, e mettere in atto un’infezione persistente, il batterio si serve di una serie di fattori di virulenza che includono anche le proteine Heat Shock (chaperone). I principali geni codificanti le proteine chaperone in H. pylori sono organizzati in tre operoni trascritti dall’RNA polimerasi contenente il fattore sigma vegetativo σ80. La trascrizione di due dei tre operoni è regolata negativamente da due regolatori trascrizionali, HspR e HrcA, mentre il terzo operone è represso solo da HspR. Fino ad ora, studi molecolari per la comprensione del ruolo di ciascuna proteina nel controllo trascrizionale dei geni heat shock sono stati ostacolati dalla citotossicità ed insolubilità di HrcA quando espressa in sistemi eterologhi. In questo lavoro, è stata analizzata la sequenza amminoacidica di HrcA ed è stata confermata sperimentalmente la predizione bioinformatica della sua associazione con la membrana interna. La citotossicità e l’insolubilità di HrcA in E. coli sono state alleviate inducendone l’espressione a 42°C. Saggi in vitro con le proteine ricombinanti purificate, HspR e HrcA, hanno consentito di definire i siti di legame dei due repressori sui promotori degli operoni heat shock. Ulteriori saggi in vitro hanno suggerito che l’affinità di HrcA per gli operatori è aumentata dalla chaperonina GroESL. Questi dati contribuiscono parzialmente alla comprensione del meccanismo di repressione della trascrizione espletato da HrcA e HspR e permettono di ipotizzare il coinvolgimento di altri regolatori trascrizionali. L’analisi di RNA estratti dal ceppo selvatico e dai mutanti hrcA, hspR e hrcA/hspR di H.pylori su DNAmacroarrays non ha evidenziato il coinvolgimento di altri regolatori trascrizionali, ma ha permesso l’identificazione di un gruppo di geni indotti da HrcA e/ HspR. Questi geni sono coinvolti nella biosintesi e regolazione dell’apparato flagellare, suggerendo un’interconnessione tra la risposta heat shock e la motilità e chemiotassi del batterio.
Resumo:
The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.
Resumo:
Brown rot caused by Monilinia laxa and Monilinia fructigena is considered one of the most important diseases affecting Prunus species. Although some losses can result from the rotten fruits in the orchard, most of the damage is caused to fruits during the post-harvest phase. Several studies reported that brown rot incidence during fruit development highly varies; it was found that at a period corresponding to the the pit hardening stage, fruit susceptibility drastically decreases, to be quickly restored afterwards. However the molecular basis of this phenomenon is still not well understood. Furthermore, no difference in the rot incidence was found between wound and un-wound fruits, suggesting that resistance associated more to a specifc biochemical response of the fruit, rather than to a higher mechanical resistance. So far, the interaction Monilinia-peach was analyzed through chemical approaches. In this study, a bio-molecular approach was undertaken in order to reveal alteration in gene expression associated to the variation of susceptibility. In this thesis three different methods for gene expression analysis were used to analyze the alterations in gene expression occurring in peach fruits during the pit hardening stage, in a period encompassing the temporary change in Monilinia susceptibility: real time PCR, microarray and cDNA AFLP techniques. In 2005, peach fruits (cv.K2) were weekly harvested during a 19-week long-period, starting from the fourth week after full bloom, until full maturity. At each sampling time, three replicates of 5 fruits each were dipped in the M.laxa conidial suspension or in distilled water, as negative control. The fruits were maintained at room temperature for 3 hours; afterwards, they were peeled with a scalpel; the peel was immediately frozen in liquid nitrogen and transferred to -80 °C until use. The degree of susceptibility of peach fruit to the pathogen was determined on 3 replicates of 20 fruits each, as percentage of infected fruits, after one week at 20 °C. Real time PCR analysis was performed to study the variation in expression of those genes encoding for the enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), cinnamate 4-hydroxylase (C4H), leucoanthocyanidine reductase (LAR), hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) and of the jasmonate pathway, such as lipoxygenase (LOX), both involved in the production of important defense compounds. Alteration in gene expression was monitored on fruit samples of a period encompassing the pit hardening stage and the corresponding temporary resistance to M.laxa infections, weekly, from the 6thto the 12th week after full bloom (AFB) inoculated with M. laxa or mock-inoculated. The data suggest a critical change in the expression level of the phenylpropanoid pathway from the 7th to the 8th week AFB; such change could be directly physiologically associated to the peach growth and it could indirectly determine the decrease of susceptibility of peach fruit to Monilinia rot during the subsequent weeks. To investigate on the transcriptome variation underneath the temporary loss of susceptibility of peach fruits to Monilinia rot, the microarray and the cDNA AFLP techniques were used. The samples harvested on the 8th week AFB (named S, for susceptible ones) and on the 12th week AFB (named R, for resistant ones) were compared, both inoculated or mock-inoculated. The microarray experiments were carried out at the University of Padua (Dept. of Environmental Agronomy and Crop Science), using the μPEACH1.0 microarray together with the suited protocols. The analysis showed that 30 genes (corresponding to the 0.6% of the total sequences (4806) contained in the μPeach1.0 microarray) were found up-regulated and 31 ( 0.6%) down regulated in RH vs. SH fruits. On the other hand, 20 genes (0.4%) were shown to be up-regulated and 13 (0.3%) down-regulated in the RI vs. SI fruit. No genes were found differentially expressed in the mock-inoculated resistant fruits (RH) vs. the inoculated resistant ones (RI). Among the up-regulated genes an ATP sulfurylase, an heat shock protein 70, the major allergen Pru P1, an harpin inducing protein and S-adenosylmethionine decarboxylase were found, conversely among the down-regulated ones, cinnamyl alcohol dehydrogenase, an histidine- containing phosphotransfer protein and the ferritin were found. The microarray experimental results and the data indirectly derived, were tested by Real Time PCR analysis. cDNA AFLP analysis was also performed on the same samples. 339 transcript derived fragments considered significant for Monilinia resistance, were selected, sequenced and classified. Genes potentially involved in cell rescue and defence were well represented (8%); several genes (12.1%) involved in the protein folding, post-transductional modification and genes (9.2%) involved in cellular transport were also found. A further 10.3% of genes were classified as involved in the metabolism of aminoacid, carbohydrate and fatty acid. On the other hand, genes involved in the protein synthesis (5.7%) and in signal transduction and communication (5.7%) were found. Among the most interesting genes found differentially expressed between susceptible and resistant fruits, genes encoding for pathogenesis related (PR) proteins were found. To investigate on the association of Monilinia resistance and PR biological function, the major allergen Pru P1 (GenBank accession AM493970) and its isoform (here named Pru P2), were expressed in heterologous system and in vitro assayed for their anti-microbial activity. The ribonuclease activity of the recombinant Pru P1 and Pru P2 proteins was assayed against peach total RNA. As the other PR10 proteins, they showed a ribonucleolytic activity, that could be important to contrast pathogen penetration. Moreover Pru P1 and Pru P2 recombinant proteins were checked for direct antimicrobial activity. No inhibitory effect of Pru P1 or Pru P2 was detected against the selected fungi.
Resumo:
In the last decades, the increase of industrial activities and of the request for the world food requirement, the intensification of natural resources exploitation, directly connected to pollution, have aroused an increasing interest of the public opinion towards initiatives linked to the regulation of food production, as well to the institution of a modern legislation for the consumer guardianship. This work was planned taking into account some important thematics related to marine environment, collecting and showing the data obtained from the studies made on different marine species of commercial interest (Chamelea gallina, Mytilus edulis, Ostrea edulis, Crassostrea gigas, Salmo salar, Gadus morhua). These studies have evaluated the effects of important physic and chemical parameters variations (temperature, xenobiotics like drugs, hydrocarbons and pesticides) on cells involved in the immune defence (haemocytes) and on some important enzymatic systems involved in xenobiotic biotransformation processes (cytochrome P450 complex) and in the related antioxidant defence processes (Superoxide dismutase, Catalase, Heat Shock Protein), from a biochemical and bimolecular point of view. Oxygen is essential in the biological answer of a living organism. Its consume in the normal cellular breathing physiological processes and foreign substances biotransformation, leads to reactive oxygen species (ROS) formation, potentially toxic and responsible of biological macromolecules damages with consequent pathologies worsening. Such processes can bring to a qualitative alteration of the derived products, but also to a general state of suffering that in the most serious cases can provoke the death of the organism, with important repercussions in economic field, in the output of the breedings, of fishing and of aquaculture. In this study it seemed interesting to apply also alternative methodologies currently in use in the medical field (cytofluorimetry) and in proteomic studies (bidimensional electrophoresis, mass spectrometry) with the aim of identify new biomarkers to place beside the traditional methods for the control of the animal origin food quality. From the results it’s possible to point out some relevant aspects from each experiment: 1. The cytofluorimetric techniques applied to O. edulis and C. gigas could bring to important developments in the search of alternative methods that quickly allows to identify with precision the origin of a specific sample, contributing to oppose possible alimentary frauds, in this case for example related to presence of a different species, also under a qualitative profile, but morpholgically similar. A concrete perspective for the application in the inspective field of this method has to be confirmed by further laboratory tests that take also in account in vivo experiments to evaluate the effect in the whole organism of the factors evaluated only on haemocytes in vitro. These elements suggest therefore the possibility to suit the cytofluorimetric methods for the study of animal organisms of food interest, still before these enter the phase of industrial working processes, giving useful information about the possible presence of contaminants sources that can induce an increase of the immune defence and an alteration of normal cellular parameter values. 2. C. gallina immune system has shown an interesting answer to benzo[a]pyrene (B[a]P) exposure, dose and time dependent, with a significant decrease of the expression and of the activity of one of the most important enzymes involved in the antioxidant defence in haemocytes and haemolymph. The data obtained are confirmed by several measurements of physiological parameters, that together with the decrease of the activity of 7-etossi-resourifine-O-deetilase (EROD linked to xenobiotic biotransformation processes) during exposure, underline the major effects of B[a]P action. The identification of basal levels of EROD supports the possible presence of CYP1A subfamily in the invertebrates, still today controversial, never identified previously in C. gallina and never isolated in the immune cells, as confirmed instead in this study with the identification of CYP1A-immunopositive protein (CYP1A-IPP). This protein could reveal a good biomarker at the base of a simple and quick method that could give clear information about specific pollutants presence, even at low concentrations in the environment where usually these organisms are fished before being commercialized. 3. In this experiment it has been evaluated the effect of the antibiotic chloramphenicol (CA) in an important species of commercial interest, Chamelea gallina. Chloramphenicol is a drug still used in some developing countries, also in veterinary field. Controls to evaluate its presence in the alimentary products of animal origin, can reveal ineffective whereas the concentration results to be below the limit of sensitivity of the instruments usually used in this type of analysis. Negative effects of CA towards the CYP1A- IPP proteins, underlined in this work, seem to be due to the attack of free radicals resultant from the action of the antibiotic. This brings to a meaningful alteration of the biotransformation mechanisms through the free radicals. It seems particularly interesting to pay attention to the narrow relationships in C. gallina, between SOD/CAT and CYP450 system, actively involved in detoxification mechanism, especially if compared with the few similar works today present about mollusc, a group that is composed by numerous species that enter in the food field and on which constant controls are necessary to evaluate in a rapid and effective way the presence of possible contaminations. 4. The investigations on fishes (Gadus morhua, and Salmo salar) and on a bivalve mollusc (Mytilus edulis) have allowed to evaluate different aspects related to the possibility to identify a biomarker for the evaluation of the health of organisms of food interest and consequently for the quality of the final product through 2DE methodologies. In the seafood field these techniques are currently used with a discreet success only for vertebrates (fishes), while in the study of the invertebrates (molluscs) there are a lot of difficulties. The results obtained in this work have underline several problems in the correct identification of the isolated proteins in animal organisms of which doesn’t currently exist a complete genomic sequence. This brings to attribute some identities on the base of the comparison with similar proteins in other animal groups, incurring in the possibility to obtain inaccurate data and above all discordant with those obtained on the same animals by other authors. Nevertheless the data obtained in this work after MALDI-ToF analysis, result however objective and the spectra collected could be again analyzed in the future after the update of genomic database related to the species studied. 4-A. The investigation about the presence of HSP70 isoforms directly induced by different phenomena of stress like B[a]P presence, has used bidimensional electrophoresis methods in C. gallina, that have allowed to isolate numerous protein on 2DE gels, allowing the collection of several spots currently in phase of analysis with MALDI-ToF-MS. The present preliminary work has allowed therefore to acquire and to improve important methodologies in the study of cellular parameters and in the proteomic field, that is not only revealed of great potentiality in the application in medical and veterinary field, but also in the field of the inspection of the foods with connections to the toxicology and the environmental pollution. Such study contributes therefore to the search of rapid and new methodologies, that can increase the inspective strategies, integrating themselves with those existing, but improving at the same time the general background of information related to the state of health of the considered animal organism, with the possibility, still hypothetical, to replace in particular cases the employment of the traditional techniques in the alimentary field.
Resumo:
Many physiological and pathological processes are mediated by the activity of proteins assembled in homo and/or hetero-oligomers. The correct recognition and association of these proteins into a functional complex is a key step determining the fate of the whole pathway. This has led to an increasing interest in selecting molecules able to modulate/inhibit these protein-protein interactions. In particular, our research was focused on Heat Shock Protein 90 (Hsp90), responsible for the activation and maturation and disposition of many client proteins [1], [2] [3]. Circular Dichroism (CD) spectroscopy, Surface Plasmon Resonance (SPR) and Affinity Capillary Electrophoresis (ACE) were used to characterize the Hsp90 target and, furthermore, its inhibition process via C-terminal domain driven by the small molecule Coumermycin A1. Circular Dichroism was used as powerful technique to characterize Hsp90 and its co-chaperone Hop in solution for secondary structure content, stability to different pHs, temperatures and solvents. Furthermore, CD was used to characterize ATP but, unfortunately, we were not able to monitor an interaction between ATP and Hsp90. The utility of SPR technology, on the other hand, arises from the possibility of immobilizing the protein on a chip through its N-terminal domain to later study the interaction with small molecules able to disrupt the Hsp90 dimerization on the C-terminal domain. The protein was attached on SPR chip using the “amine coupling” chemistry so that the C-terminal domain was free to interact with Coumermycin A1. The goal of the experiment was achieved by testing a range of concentrations of the small molecule Coumermycin A1. Despite to the large difference in the molecular weight of the protein (90KDa) and the drug (1110.08 Da), we were able to calculate the affinity constant of the interaction that was found to be 11.2 µm. In order to confirm the binding constant calculated for the Hsp90 on the chip, we decided to use Capillary Electrophoresis to test the Coumermycin binding to Hsp90. First, this technique was conveniently used to characterize the Hsp90 sample in terms of composition and purity. The experimental conditions were settled on two different systems, the bared fused silica and the PVA-coated capillary. We were able to characterize the Hsp90 sample in both systems. Furthermore, we employed an application of capillary electrophoresis, the Affinity Capillary Electrophoresis (ACE), to measure and confirm the binding constant calculated for Coumermycin on Optical Biosensor. We found a KD = 19.45 µM. This result compares favorably with the KD previously obtained on biosensor. This is a promising result for the use of our novel approach to screen new potential inhibitors of Hsp90 C-terminal domain.
Resumo:
Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.
Resumo:
In recent years the hot water treatment (HW) represents an effective and safe approach for managing postharvest decay. This study reported the effect of an HW (60°C for 60 s and 45°C for 10 min) on brown rot and blue mould respectively. Peaches was found more thermotolerant compared to apple fruit, otherwise Penicillium expansum was more resistant to heat with respect to Monilinia spp. In semi-commercial and commercial trials, the inhibition of brown rot in naturally infected peaches was higher than 78% after 6 days at 0°C and 3 days at 20°C. Moreover, in laboratory trials a 100% disease incidence reduction was obtained by treating artificially infected peaches at 6-12 h after inoculation revealing a curative effect of HW. The expression levels of some genes were evaluated by qRT-PCR. Specifically, the cell wall genes (β-GAL, PL, PG, PME) showed a general decrease of expression level whereas PAL, CHI, HSP70 and ROS-scavenging genes were induced in treated peaches compared to the control ones. Contrarily, HW applied on artificially infected fruit before the inoculum was found to increase brown rot susceptibility. This aspect might be due to an increase of fruit VOCs emission as revealed by PTR-ToF-MS analysis. In addition a microarray experiment was conducted to analyze molecular mechanisms underneath the apple response to heat. Our results showed a largest amount of induced Heat shock proteins (HSPs), Heat shock cognate proteins (HSCs), Heat shock transcription factors (HSTFs) genes found at 1 and 4 hours from the treatment. Those genes required for the thermotolerance process could be involved in induced resistance response. The hypothesis was confirmed by 30% of blue mold disease reduction in artificially inoculated apple after 1 and 4 hours from the treatment. In order to improve peaches quality and disease management during storage, an innovative tool was also used: Da-meter.