10 resultados para Grid-Connected InvertersInverter

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project concentrates on the Low Voltage Ride Through (LVRT) capability of Doubly Fed Induction Generator (DFIG) wind turbine. The main attention in the project is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. It provides also an overview on the interaction between variable speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of this project is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behavior of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by Transmission System Operator in the power system simulation toolbox Digsilent, Matlab/Simulink and PLECS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of the peak-to-peak output current ripple amplitude for multiphase and multilevel inverters is presented in this PhD thesis. The current ripple is calculated on the basis of the alternating voltage component, and peak-to-peak value is defined by the current slopes and application times of the voltage levels in a switching period. Detailed analytical expressions of peak-to-peak current ripple distribution over a fundamental period are given as function of the modulation index. For all the cases, reference is made to centered and symmetrical switching patterns, generated either by carrier-based or space vector PWM. Starting from the definition and the analysis of the output current ripple in three-phase two-level inverters, the theoretical developments have been extended to the case of multiphase inverters, with emphasis on the five- and seven-phase inverters. The instantaneous current ripple is introduced for a generic balanced multiphase loads consisting of series RL impedance and ac back emf (RLE). Simplified and effective expressions to account for the maximum of the output current ripple have been defined. The peak-to-peak current ripple diagrams are presented and discussed. The analysis of the output current ripple has been extended also to multilevel inverters, specifically three-phase three-level inverters. Also in this case, the current ripple analysis is carried out for a balanced three-phase system consisting of series RL impedance and ac back emf (RLE), representing both motor loads and grid-connected applications. The peak-to-peak current ripple diagrams are presented and discussed. In addition, simulation and experimental results are carried out to prove the validity of the analytical developments in all the cases. The cases with different phase numbers and with different number of levels are compared among them, and some useful conclusions have been pointed out. Furthermore, some application examples are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinformatics is a recent and emerging discipline which aims at studying biological problems through computational approaches. Most branches of bioinformatics such as Genomics, Proteomics and Molecular Dynamics are particularly computationally intensive, requiring huge amount of computational resources for running algorithms of everincreasing complexity over data of everincreasing size. In the search for computational power, the EGEE Grid platform, world's largest community of interconnected clusters load balanced as a whole, seems particularly promising and is considered the new hope for satisfying the everincreasing computational requirements of bioinformatics, as well as physics and other computational sciences. The EGEE platform, however, is rather new and not yet free of problems. In addition, specific requirements of bioinformatics need to be addressed in order to use this new platform effectively for bioinformatics tasks. In my three years' Ph.D. work I addressed numerous aspects of this Grid platform, with particular attention to those needed by the bioinformatics domain. I hence created three major frameworks, Vnas, GridDBManager and SETest, plus an additional smaller standalone solution, to enhance the support for bioinformatics applications in the Grid environment and to reduce the effort needed to create new applications, additionally addressing numerous existing Grid issues and performing a series of optimizations. The Vnas framework is an advanced system for the submission and monitoring of Grid jobs that provides an abstraction with reliability over the Grid platform. In addition, Vnas greatly simplifies the development of new Grid applications by providing a callback system to simplify the creation of arbitrarily complex multistage computational pipelines and provides an abstracted virtual sandbox which bypasses Grid limitations. Vnas also reduces the usage of Grid bandwidth and storage resources by transparently detecting equality of virtual sandbox files based on content, across different submissions, even when performed by different users. BGBlast, evolution of the earlier project GridBlast, now provides a Grid Database Manager (GridDBManager) component for managing and automatically updating biological flatfile databases in the Grid environment. GridDBManager sports very novel features such as an adaptive replication algorithm that constantly optimizes the number of replicas of the managed databases in the Grid environment, balancing between response times (performances) and storage costs according to a programmed cost formula. GridDBManager also provides a very optimized automated management for older versions of the databases based on reverse delta files, which reduces the storage costs required to keep such older versions available in the Grid environment by two orders of magnitude. The SETest framework provides a way to the user to test and regressiontest Python applications completely scattered with side effects (this is a common case with Grid computational pipelines), which could not easily be tested using the more standard methods of unit testing or test cases. The technique is based on a new concept of datasets containing invocations and results of filtered calls. The framework hence significantly accelerates the development of new applications and computational pipelines for the Grid environment, and the efforts required for maintenance. An analysis of the impact of these solutions will be provided in this thesis. This Ph.D. work originated various publications in journals and conference proceedings as reported in the Appendix. Also, I orally presented my work at numerous international conferences related to Grid and bioinformatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I Max Bill is an intense giornata of a big fresco. An analysis of the main social, artistic and cultural events throughout the twentieth century is needed in order to trace his career through his masterpieces and architectures. Some of the faces of this hypothetical mural painting are, among others, Le Corbusier, Walter Gropius, Ernesto Nathan Rogers, Kandinskij, Klee, Mondrian, Vatongerloo, Ignazio Silone, while the backcloth is given by artistic avant-gardes, Bauhaus, International Exhibitions, CIAM, war events, reconstruction, Milan Triennali, Venice Biennali, the School of Ulm. Architect, even though more known as painter, sculptor, designer and graphic artist, Max Bill attends the Bauhaus as a student in the years 1927-1929, and from this experience derives the main features of a rational, objective, constructive and non figurative art. His research is devoted to give his art a scientific methodology: each work proceeds from the analysis of a problem to the logical and always verifiable solution of the same problem. By means of composition elements (such as rhythm, seriality, theme and its variation, harmony and dissonance), he faces, with consistent results, themes apparently very distant from each other as the project for the H.f.G. or the design for a font. Mathematics are a constant reference frame as field of certainties, order, objectivity: ‘for Bill mathematics are never confined to a simple function: they represent a climate of spiritual certainties, and also the theme of non attempted in its purest state, objectivity of the sign and of the geometrical place, and at the same time restlessness of the infinity: Limited and Unlimited ’. In almost sixty years of activity, experiencing all artistic fields, Max Bill works, projects, designs, holds conferences and exhibitions in Europe, Asia and Americas, confronting himself with the most influencing personalities of the twentieth century. In such a vast scenery, the need to limit the investigation field combined with the necessity to address and analyse the unpublished and original aspect of Bill’s relations with Italy. The original contribution of the present research regards this particular ‘geographic delimitation’; in particular, beyond the deep cultural exchanges between Bill and a series of Milanese architects, most of all with Rogers, two main projects have been addressed: the realtà nuova at Milan Triennale in 1947, and the Contemporary Art Museum in Florence in 1980. It is important to note that these projects have not been previously investigated, and the former never appears in the sources either. These works, together with the most well-known ones, such as the projects for the VI and IX Triennale, and the Swiss pavilion for the Biennale, add important details to the reference frame of the relations which took place between Zurich and Milan. Most of the occasions for exchanges took part in between the Thirties and the Fifties, years during which Bill underwent a significant period of artistic growth. He meets the Swiss progressive architects and the Paris artists from the Abstraction-Création movement, enters the CIAM, collaborates with Le Corbusier to the third volume of his Complete Works, and in Milan he works and gets confronted with the events related to post-war reconstruction. In these years Bill defines his own working methodology, attaining an artistic maturity in his work. The present research investigates the mentioned time period, despite some necessary exceptions. II The official Max Bill bibliography is naturally wide, including spreading works along with ones more devoted to analytical investigation, mainly written in German and often translated into French and English (Max Bill himself published his works in three languages). Few works have been published in Italian and, excluding the catalogue of the Parma exhibition from 1977, they cannot be considered comprehensive. Many publications are exhibition catalogues, some of which include essays written by Max Bill himself, some others bring Bill’s comments in a educational-pedagogical approach, to accompany the observer towards a full understanding of the composition processes of his art works. Bill also left a great amount of theoretical speculations to encourage a critical reading of his works in the form of books edited or written by him, and essays published in ‘Werk’, magazine of the Swiss Werkbund, and other international reviews, among which Domus and Casabella. These three reviews have been important tools of analysis, since they include tracks of some of Max Bill’s architectural works. The architectural aspect is less investigated than the plastic and pictorial ones in all the main reference manuals on the subject: Benevolo, Tafuri and Dal Co, Frampton, Allenspach consider Max Bill as an artist proceeding in his work from Bauhaus in the Ulm experience . A first filing of his works was published in 2004 in the monographic issue of the Spanish magazine 2G, together with critical essays by Karin Gimmi, Stanislaus von Moos, Arthur Rüegg and Hans Frei, and in ‘Konkrete Architektur?’, again by Hans Frei. Moreover, the monographic essay on the Atelier Haus building by Arthur Rüegg from 1997, and the DPA 17 issue of the Catalonia Polytechnic with contributions of Carlos Martì, Bruno Reichlin and Ton Salvadò, the latter publication concentrating on a few Bill’s themes and architectures. An urge to studying and going in depth in Max Bill’s works was marked in 2008 by the centenary of his birth and by a recent rediscovery of Bill as initiator of the ‘minimalist’ tradition in Swiss architecture. Bill’s heirs are both very active in promoting exhibitions, researching and publishing. Jakob Bill, Max Bill’s son and painter himself, recently published a work on Bill’s experience in Bauhaus, and earlier on he had published an in-depth study on ‘Endless Ribbons’ sculptures. Angela Thomas Schmid, Bill’s wife and art historian, published in end 2008 the first volume of a biography on Max Bill and, together with the film maker Eric Schmid, produced a documentary film which was also presented at the last Locarno Film Festival. Both biography and documentary concentrate on Max Bill’s political involvement, from antifascism and 1968 protest movements to Bill experiences as Zurich Municipality councilman and member of the Swiss Confederation Parliament. In the present research, the bibliography includes also direct sources, such as interviews and original materials in the form of letters correspondence and graphic works together with related essays, kept in the max+binia+jakob bill stiftung archive in Zurich. III The results of the present research are organized into four main chapters, each of them subdivided into four parts. The first chapter concentrates on the research field, reasons, tools and methodologies employed, whereas the second one consists of a short biographical note organized by topics, introducing the subject of the research. The third chapter, which includes unpublished events, traces the historical and cultural frame with particular reference to the relations between Max Bill and the Italian scene, especially Milan and the architects Rogers and Baldessari around the Fifties, searching the themes and the keys for interpretation of Bill’s architectures and investigating the critical debate on the reviews and the plastic survey through sculpture. The fourth and last chapter examines four main architectures chosen on a geographical basis, all devoted to exhibition spaces, investigating Max Bill’s composition process related to the pictorial field. Paintings has surely been easier and faster to investigate and verify than the building field. A doctoral thesis discussed in Lausanne in 1977 investigating Max Bill’s plastic and pictorial works, provided a series of devices which were corrected and adapted for the definition of the interpretation grid for the composition structures of Bill’s main architectures. Four different tools are employed in the investigation of each work: a context analysis related to chapter three results; a specific theoretical essay by Max Bill briefly explaining his main theses, even though not directly linked to the very same work of art considered; the interpretation grid for the composition themes derived from a related pictorial work; the architecture drawing and digital three-dimensional model. The double analysis of the architectural and pictorial fields is functional to underlining the relation among the different elements of the composition process; the two fields, however, cannot be compared and they stay, in Max Bill’s works as in the present research, interdependent though self-sufficient. IV An important aspect of Max Bill production is self-referentiality: talking of Max Bill, also through Max Bill, as a need for coherence instead of a method limitation. Ernesto Nathan Rogers describes Bill as the last humanist, and his horizon is the known world but, as the ‘Concrete Art’ of which he is one of the main representatives, his production justifies itself: Max Bill not only found a method, but he autonomously re-wrote the ‘rules of the game’, derived timeless theoretical principles and verified them through a rich and interdisciplinary artistic production. The most recurrent words in the present research work are synthesis, unity, space and logic. These terms are part of Max Bill’s vocabulary and can be referred to his works. Similarly, graphic settings or analytical schemes in this research text referring to or commenting Bill’s architectural projects were drawn up keeping in mind the concise precision of his architectural design. As for Mies van der Rohe, it has been written that Max Bill took art to ‘zero degree’ reaching in this way a high complexity. His works are a synthesis of art: they conceptually encompass all previous and –considered their developments- most of contemporary pictures. Contents and message are generally explicitly declared in the title or in Bill’s essays on his artistic works and architectural projects: the beneficiary is invited to go through and re-build the process of synthesis generating the shape. In the course of the interview with the Milan artist Getulio Alviani, he tells how he would not write more than a page for an essay on Josef Albers: everything was already evident ‘on the surface’ and any additional sentence would be redundant. Two years after that interview, these pages attempt to decompose and single out the elements and processes connected with some of Max Bill’s works which, for their own origin, already contain all possible explanations and interpretations. The formal reduction in favour of contents maximization is, perhaps, Max Bill’s main lesson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.