2 resultados para Green oxidation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Il progetto di ricerca di questa tesi è stato focalizzato sulla sintesi di tre classi di molecole: β-lattami, Profeni e α-amminonitrili, utilizzando moderne tecniche di sintesi organica, metodologie ecosostenibili e strategie biocatalitiche. I profeni sono una categoria di antiinfiammatori molto diffusa e in particolare abbiamo sviluppato e ottimizzato una procedura in due step per ottenere (S)-Profeni da 2-arilpropanali raceme. Il primo step consiste in una bioriduzione delle aldeidi per dare i relativi (S)-2-Aril Propanoli tramite un processo DKR mediato dall’enzima Horse Liver Alcohol Dehydrogenase. Il secondo, l’ossidazione a (S)-Profeni, è promossa da NaClO2 e TEMPO come catalizzatore. Con lo scopo di migliorare il processo, in collaborazione con il gruppo di ricerca di Francesca Paradisi all’University College Dublino abbiamo immobilizzato l’enzima HLADH, ottenendo buone rese e una migliore enantioselettività. Abbiamo inoltre proposto un interessante approccio enzimatico per l’ossidazione degli (S)-2-Aril Propanoli utilizzando una laccasi da Trametes Versicolor. L’anello β-lattamico è un eterociclo molto importante, noto per essere un interessante farmacoforo. Abbiamo sintetizzato nuovi N-metiltio beta-lattami, che hanno mostrato un’attività antibatterica molto interessante contro ceppi resistenti di Staphilococcus Aureus prelevati da pazienti affetti da fibrosis cistica. Abbiamo poi coniugato gruppi polifenolici a questi nuovi β-lattami ottenendo molecule antiossidanti e antibatteriche, cioè con attività duale. Abbiamo poi sintetizzato un nuovo ibrido retinoide-betalattame che ha indotto differenziazione si cellule di neuroblastoma. Abbiamo poi sfruttato la reazione di aperture dell’anello monobattamico tramite enzimi idrolitici, con lo scopo di ottenere β-amminoacidi chirali desimmetrizzati come il monoestere dell’acido β–amminoglutammico. Per quando riguarda gli α-amminonitrili, è stato sviluppato un protocollo di Strecker. Le reazioni sono state molto efficienti utilizzando come fonte di cianuro l’acetone cianidrina in acqua, utilizzando differenti aldeidi e chetoni, ammine primarie e secondarie. Per mettere a punto una versione asimmetrica del protocollo, abbiamo usato ammine chirali con lo scopo di ottenere nuovi α-amminonitrili chirali.
Resumo:
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.