2 resultados para Graph analysis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. One of the phenomena observed in human aging is the progressive increase of a systemic inflammatory state, a condition referred to as “inflammaging”, negatively correlated with longevity. A prominent mediator of inflammation is the transcription factor NF-kB, that acts as key transcriptional regulator of many genes coding for pro-inflammatory cytokines. Many different signaling pathways activated by very diverse stimuli converge on NF-kB, resulting in a regulatory network characterized by high complexity. NF-kB signaling has been proposed to be responsible of inflammaging. Scope of this analysis is to provide a wider, systemic picture of such intricate signaling and interaction network: the NF-kB pathway interactome. Methods. The study has been carried out following a workflow for gathering information from literature as well as from several pathway and protein interactions databases, and for integrating and analyzing existing data and the relative reconstructed representations by using the available computational tools. Strong manual intervention has been necessarily used to integrate data from multiple sources into mathematically analyzable networks. The reconstruction of the NF-kB interactome pursued with this approach provides a starting point for a general view of the architecture and for a deeper analysis and understanding of this complex regulatory system. Results. A “core” and a “wider” NF-kB pathway interactome, consisting of 140 and 3146 proteins respectively, were reconstructed and analyzed through a mathematical, graph-theoretical approach. Among other interesting features, the topological characterization of the interactomes shows that a relevant number of interacting proteins are in turn products of genes that are controlled and regulated in their expression exactly by NF-kB transcription factors. These “feedback loops”, not always well-known, deserve deeper investigation since they may have a role in tuning the response and the output consequent to NF-kB pathway initiation, in regulating the intensity of the response, or its homeostasis and balance in order to make the functioning of such critical system more robust and reliable. This integrated view allows to shed light on the functional structure and on some of the crucial nodes of thet NF-kB transcription factors interactome. Conclusion. Framing structure and dynamics of the NF-kB interactome into a wider, systemic picture would be a significant step toward a better understanding of how NF-kB globally regulates diverse gene programs and phenotypes. This study represents a step towards a more complete and integrated view of the NF-kB signaling system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.