3 resultados para Graham Center

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver transplantation is the only definitive treatment for transthyretin amyloidosis, with an excellent 5-year survival in endemic countries where the Met30 mutation is predominant. We report our experience of liver transplantation for transthyretin amyloidosis. We reviewed the clinical records of 17 transplanted patients (11 males, 6 females; age at liver transplant: 45.7±11.7 years). We had a wide spectrum of non-Met30 mutations (52.9%), with a predominance of Gln89 (23.5%). Five-year survival after transplantation was 43.8%; at multivariate analysis, both non-Met30 mutations (HR 17.3, 95% CI 1.03-291.7) and modified BMI (HR 0.50, 95% CI 0.29-0.87) showed significant and independent prognostic roles (P=0.048 and P=0.015, respectively). Five out of the 9 non-Met30 carriers received combined heart transplantation because of severe cardiomyopathy; they showed a trend towards a better prognosis vs. the 4 patients who did not receive combined heart transplantation (although not statistically significant; P=0.095). At follow-up, no significant improvement of transthyretin amyloidosis manifestations was observed. The results of liver transplantation for transthyretin amyloidosis in our population are poorer than those reported in the literature probably because of the high prevalence of non-Met30 mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Transjugular intrahepatic porto-systemic shunt (TIPS) is an accepted indication for treating refractory ascites. Different models have been proposed for the prediction of survival after TIPS; aim of present study was to evaluate the factors associated with mortality after TIPS for refractory ascites. Methods: Seventy-three consecutive patients undergoing a TIPS for refractory ascites in our centre between 2003 and 2008, were prospectively recorded in a database ad were the subject of the study. Mean follow-up was 17±2 months. Forty patients were awaiting liver transplantation (LT) and 12 (16.4%) underwent LT during follow-up. Results: Mean MELD at the moment of TIPS was 15.7±5.3. Overall mortality was 23.3% (n=17) with a mean survival after TIPS of 17±14 months. MELD score (B=0.161, p=0.042), AST (B= 0.020, p=0.090) and pre-TIPS HVPG (B=0.016, p=0.093) were independent predictors of overall mortality. On multivariate analysis MELD (B=0.419, p=0.018) and pre-TIPS HVPG (B=0.223, p=0.060) independently predicted 1 year survival. Patients were stratified into categories of death risk, using ROC curves for the variables MELD and HVPG. Patients with MELD<10 had a low probability of death after TIPS (n=6, 16% mortality); patients with HVPG <16 mmHg (n=6) had no mortality. Maximum risk of death was found in patients with MELD score 19 (n=16, 31% mortality) and in those with HVPG 25 mmHg (n=27, 26% mortality). Conclusions: TIPS increases overall survival in patients with refractory ascites. Liver function (assessed by MELD), necroinflammation (AST) and portal hypertension (HVPG) are independent predictors of survival; patients with MELD>19 and HVPG>25 mmHg are at highest risk of death after TIPS