1 resultado para Glycoconjugates
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Bacterial capsular polysaccharides (PS) which naturally contain zwitterionic charge motifs (ZPS) possess specific immunostimulatory activity, leading to direct activation of antigen-presenting cells (APCs) through Toll-like receptor 2 (TLR2) and of T cells in co-culture systems. When administered intraperitoneally, ZPS and bacteria expressing them are involved in the induction or regulation of T-cell dependent inflammatory processes such as intra-abdominal abscess formation. Moreover it has been published that ZPSs are processed to low molecular weight carbohydrates and presented to T cells through a pathway similar to that used for protein antigens. These findings were in contrast with the paradigm according to which polysaccharides are T-independent antigens unable to be presented in association with MHC class II molecules and unable to induce a protective immune response. For this reason in glycoconjugate vaccines polysaccharides often need to be conjugated to a carrier protein to induce protection. The aim of our work was to generate vaccine candidates with antigen and adjuvant properties in one molecule by the chemical introduction of a positive charge into naturally anionic PS from group B streptococcus (GBS). The resulting zwitterionic PS (ZPS) has the ability to activate human and mouse APCs, and in mixed co-cultures of monocytes and T cells, ZPS induce MHC II-dependent T-cell proliferation and up-regulation of activation markers. TLR2 transfectants show reporter gene transcription upon incubation with ZPS and these stimulatory qualities can be blocked by anti-TLR2 mAbs or by the destruction of the zwitterionic motif. However, in vivo, ZPS used alone as vaccine antigen failed to induce protection against GBS challenge, a result which does not confirm the above mentioned postulate that ZPS are T-cell dependent Ags by virtue of their charge motif. Thus to make ZPS visible to the immune system we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are co-administered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent novel PS-adjuvants with wide application, including glycoconjugates and co-administration with unrelated protein Ags.