2 resultados para Glucocorticoid nuclear receptor

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis reports an integrated analytical and physicochemical approach for the study of natural substances and new drugs based on mass spectrometry techniques combined with liquid chromatography. In particular, Chapter 1 concerns the study of Berberine a natural substance with pharmacological activity for the treatment of hepatobiliary and intestinal diseases. The first part focused on the relationships between physicochemical properties, pharmacokinetics and metabolism of Berberine and its metabolites. For this purpose a sensitive HPLC-ES-MS/MS method have been developed, validated and used to determine these compounds during their physicochemical properties studies and plasma levels of berberine and its metabolites including berberrubine(M1), demethylenberberine(M3), and jatrorrhizine(M4) in humans. Data show that M1, could have an efficient intestinal absorption by passive diffusion due to a keto-enol tautomerism confirmed by NMR studies and its higher plasma concentration. In the second part of Chapter 1, a comparison between M1 and BBR in vivo biodistribution in rat has been studied. In Chapter 2 a new HPLC-ES-MS/MS method for the simultaneous determination and quantification of glucosinolates, as glucoraphanin, glucoerucin and sinigrin, and isothiocyanates, as sulforaphane and erucin, has developed and validated. This method has been used for the analysis of functional foods enriched with vegetable extracts. Chapter 3 focused on a physicochemical study of the interaction between the bile acid sequestrants used in the treatment of hypercholesterolemia including colesevelam and cholestyramine with obeticolic acid (OCA), potent agonist of nuclear receptor farnesoid X (FXR). In particular, a new experimental model for the determination of equilibrium binding isotherm was developed. Chapter 4 focused on methodological aspects of new hard ionization coupled with liquid chromatography (Direct-EI-UHPLC-MS) not yet commercially available and potentially useful for qualitative analysis and for “transparent” molecules to soft ionization techniques. This method was applied to the analysis of several steroid derivatives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nocturnal Frontal Lobe Epilepsy (NFLE) is characterized by onset during infancy or childhood with persistence in adulthood, family history of similar nocturnal episodes simulating non-REM parasomnias (sleep terrors or sleepwalking), general absence of morphological substrates, often by normal interictal electroencephalographical recordings (EEGs) during wakefulness. A family history of epilepsy may be present with Mendelian autosomal dominant inheritance has been described in some families. Recent studies indicate the involvement of neuronal nicotinic acetylcholine receptors (nAChRs) in the molecular mechanisms of NFLE. Mutations in the genes encoding for the α4 (CHRNA4) and ß2 (CHRNB2) subunits of the nAChR induce changes in the biophysical properties of nAChR, resulting generally in a “gain of function”. Preclinical studies report that activation of a nuclear receptor called type peroxisome proliferator-activated receptor (PPAR-α) by endogenous molecules or by medications (e.g. fenofibrate) reduces the activity of the nAChR and, therefore, may decrease the frequency of seizures. Thus, we hypothesize that negative modulation of nAChRs might represent a therapeutic strategy to be explored for pharmacological treatment of this form of epilepsy, which only partially responds to conventional antiepileptic drugs. In fact, carbamazepine, the current medication for NFLE, abolishes the seizures only in one third of the patients. The aim of the project is: 1)_to verify the clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant NFLE and ADNFLE patients; focousing on the analysis of the polysomnographic action of the PPAR- agonist (fenofibrate). 2)_to demonstrate the subtended mechanism of efficacy by means of electrophysiological and behavioral experiments in an animal model of the disease: particularly, transgenic mice carrying the mutation in the nAChR 4 subunit (Chrna4S252F) homologous to that found in the humans. Given that a PPAR-α agonist, FENOFIBRATE, already clinically utilized for lipid metabolism disorders, provides a promising therapeutic avenue in the treatment of NFLE\ADNFLE.