3 resultados para Global exponential stability
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.
Resumo:
The recent financial crisis triggered an increasing demand for financial regulation to counteract the potential negative economic effects of the evermore complex operations and instruments available on financial markets. As a result, insider trading regulation counts amongst the relatively recent but particularly active regulation battles in Europe and overseas. Claims for more transparency and equitable securities markets proliferate, ranging from concerns about investor protection to global market stability. The internationalization of the world’s securities market has challenged traditional notions of regulation and enforcement. Considering that insider trading is currently forbidden all over Europe, this study follows a law and economics approach in identifying how this prohibition should be enforced. More precisely, the study investigates first whether criminal law is necessary under all circumstances to enforce insider trading; second, if it should be introduced at EU level. This study provides evidence of law and economics theoretical logic underlying the legal mechanisms that guide sanctioning and public enforcement of the insider trading prohibition by identifying optimal forms, natures and types of sanctions that effectively induce insider trading deterrence. The analysis further aims to reveal the economic rationality that drives the potential need for harmonization of criminal enforcement of insider trading laws within the European environment by proceeding to a comparative analysis of the current legislations of height selected Member States. This work also assesses the European Union’s most recent initiative through a critical analysis of the proposal for a Directive on criminal sanctions for Market Abuse. Based on the conclusions drawn from its close analysis, the study takes on the challenge of analyzing whether or not the actual European public enforcement of the laws prohibiting insider trading is coherent with the theoretical law and economics recommendations, and how these enforcement practices could be improved.
Resumo:
This thesis argues the attitude control problem of nanosatellites, which has been a challenging issue over the years for the scientific community and still constitutes an active area of research. The interest is increasing as more than 70% of future satellite launches are nanosatellites. Therefore, new challenges appear with the miniaturisation of the subsystems and improvements must be reached. In this framework, the aim of this thesis is to develop novel control approaches for three-axis stabilisation of nanosatellites equipped with magnetorquers and reaction wheels, to improve the performance of the existent control strategies and demonstrate the stability of the system. In particular, this thesis is focused on the development of non-linear control techniques to stabilise full-actuated nanosatellites, and in the case of underactuation, in which the number of control variables is less than the degrees of freedom of the system. The main contributions are, for the first control strategy proposed, to demonstrate global asymptotic stability derived from control laws that stabilise the system in a target frame, a fixed direction of the orbit frame. Simulation results show good performance, also in presence of disturbances, and a theoretical selection of the magnetic control gain is given. The second control approach presents instead, a novel stable control methodology for three-axis stabilisation in underactuated conditions. The control scheme consists of the dynamical implementation of an attitude manoeuvre planning by means of a switching control logic. A detailed numerical analysis of the control law gains and the effect on the convergence time, total integrated and maximum torque is presented demonstrating the good performance and robustness also in the presence of disturbances.