21 resultados para Giants stars

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the goal of studying ML along the RGB, mid-IR observations of a carefully selected sample of 17 Galactic globular clusters (GGCs) with different metallicity and horizontal branch (HB) morphology have been secured with IRAC on board Spitzer: a global sample counting about 8000 giant has been obtained. Suitable complementary photometry in the optical and near-IR has been also secured in order to properly characterize the stellar counterparts to the Spitzer sources and their photospheric parameters. Stars with color (i.e. dust) excess have been identified, their likely circumstellar emission quantified and modelled, and empirical estimates of mass loss rates and timescales obtained. We find that mass loss rates increases with increasing stellar luminosity and decreasing metallicity. For a given luminosity, we find that ML rates are systematically higher than the prediction by extrapolating the Reimers law. CMDs constructed from ground based near-IR and IRAC bands show that at a given luminosity some stars have dusty envelopes and others do not. From this, we deduce that the mass loss is episodic and is ``on'' for some fraction of the time. The total mass lost on the RGB can be easily computed by multiplying ML rates by the ML timescales and integrating over the evolutionary timescale. The average total mass lost moderately increases with increasing metallicity, and for a given metallicity is systematically higher in clusters with extended blue HB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cool giant and supergiant stars are among the brightest populations in any stellar system and they are easily observable out to large distances, especially at infrared wavelengths. These stars also dominate the integrated light of star clusters in a wide range of ages, making them powerful tracers of stellar populations in more distant galaxies. High-resolution near-IR spectroscopy is a key tool for quantitatively investigating their kinematic, evolutionary and chemical properties. However, the systematic exploration and calibration of the NIR spectral diagnostics to study these cool stellar populations based on high-resolution spectroscopy is still in its pioneering stage. Any effort to make progress in the field is innovative and of impact on stellar archaeology and stellar evolution. This PhD project takes the challenge of exploring that new parameter space and characterizing the physical properties, the chemical content and the kinematics of cool giants and supergiants in selected disc fields and clusters of our Galaxy, with the ultimate goal of tracing their past and recent star formation and chemical enrichment history. By using optical HARPS-N and near-infrared GIANO-B high-resolution stellar spectra in the context of the large program SPA-Stellar Population Astrophysics: the detailed, age-resolved chemistry of the Milky Way disk” (PI L. Origlia), an extensive study of Arcturus, a standard calibrator for red giant stars, has been performed. New diagnostics of stellar parameters as well as optimal linelists for chemical analysis have been provided. Then, such diagnostics have been used to determine evolutionary properties, detailed chemical abundances of almost 30 different elements and mixing processes of a homogeneous sample of red supergiant stars in the Perseus complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Adaptive Optics is the measurement and correction in real time of the wavefront aberration of the star light caused by the atmospheric turbulence, that limits the angular resolution of ground based telescopes and thus their capabilities to deep explore faint and crowded astronomical objects. The lack of natural stars enough bright to be used as reference sources for the Adaptive Optics, over a relevant fraction of the sky, led to the introduction of artificial reference stars. The so-called Laser Guide Stars are produced by exciting the Sodium atoms in a layer laying at 90km of altitude, by a powerful laser beam projected toward the sky. The possibility to turn on a reference star close to the scientific targets of interest has the drawback in an increased difficulty in the wavefront measuring, mainly due to the time instability of the Sodium layer density. These issues are increased with the telescope diameter. In view of the construction of the 42m diameter European Extremely Large Telescope a detailed investigation of the achievable performances of Adaptive Optics becomes mandatory to exploit its unique angular resolution . The goal of this Thesis was to present a complete description of a laboratory Prototype development simulating a Shack-Hartmann wavefront sensor using Laser Guide Stars as references, in the expected conditions for a 42m telescope. From the conceptual design, through the opto-mechanical design, to the Assembly, Integration and Test, all the phases of the Prototype construction are explained. The tests carried out shown the reliability of the images produced by the Prototype that agreed with the numerical simulations. For this reason some possible upgrades regarding the opto-mechanical design are presented, to extend the system functionalities and let the Prototype become a more complete test bench to simulate the performances and drive the future Adaptive Optics modules design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

My PhD project has been focused on the study of the pulsating variable stars in two ultra-faint dwarf spheroidal satellites of the Milky Way, namely, Leo IV and Hercules; and in two fields of the Large Magellanic Cloud (namely, the Gaia South Ecliptic Pole calibration field, and the 30 Doradus region) that were repeatedly observed in the KS band by the VISTA Magellanic Cloud (VMC, PI M.R. Cioni) survey of the Magellanic System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue straggler stars (BSSs) are brighter and bluer (hotter) than the main-sequence (MS) turnoff and they are known to be more massive than MS stars.Two main scenarios for their formation have been proposed:collision-induced stellar mergers (COL-BSSs),or mass-transfer in binary systems (MT-BSSs).Depleted surface abundances of C and O are expected for MT-BSSs,whereas no chemical anomalies are predicted for COL-BSSs.Both MT- and COL-BSSs should rotate fast, but braking mechanisms may intervene with efficiencies and time-scales not well known yet,thus preventing a clear prediction of the expected rotational velocities.Within this context,an extensive survey is ongoing by using the multi-object spectrograph FLAMES@VLT,with the aim to obtain abundance patterns and rotational velocities for representative samples of BSSs in several Galactic GCs.A sub-population of CO-depleted BSSs has been identified in 47 Tuc,with only one fast rotating star detected.For this PhD Thesis work I analyzed FLAMES spectra of more than 130 BSSs in four GCs:M4,NGC 6397,M30 and ω Centauri.This is the largest sample of BSSs spectroscopically investigated so far.Hints of CO depletion have been observed in only 4-5 cases (in M30 and ω Centauri),suggesting either that the majority of BSSs have a collisional origin,or that the CO-depletion is a transient phenomenon.Unfortunately,no conclusions in terms of formation mechanism could be drawn in a large number of cases,because of the effects of radiative levitation. Remarkably,however,this is the first time that evidence of radiative levitation is found in BSSs hotter than 8200 K.Finally, we also discovered the largest fractions of fast rotating BSSs ever observed in any GCs:40% in M4 and 30% in ω Centauri.While not solving the problem of BSS formation,these results provide invaluable information about the BSS physical properties,which is crucial to build realistic models of their evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used high-resolution spectra, acquired with UVES@ESO-VLT, to determine the chemical abundances of different samples of AGB and RGB stars in 4 Galactic globular clusters, namely 47Tuc, NGC3201, M22 and M62. For almost all the analyzed AGB stars we found a clear discrepancy between the iron abundance measured from neutral lines and that obtained from single ionized lines, while this discrepancy is not obtained for the RGB samples observed in the same clusters and analyzed with the same procedure. Such a behavior exactly corresponds to what expected in the case of Non-Local Thermodynamical Equilibrium (NLTE) in the star atmosphere. These results have a huge impact on the proper determination of GC chemistry. In fact, one of the most intriguing consequences is that, at odds with previous claims, no iron spread is found in NGC3201 and M22 if the iron abundance is obtained from ionized lines only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis is devoted to the study of the optical companions of Millisecond Pulsars in Galactic Globular Clusters (GCs) as a part of a large project started at the Department of Astronomy of the Bologna University, in collaboration with other institutions (Astronomical Observatory of Cagliari and Bologna, University of Virginia), specifically dedicated to the study of the environmental effects on passive stellar evolution in galactic GCs. Globular Clusters are very efficient “Kilns” for generating exotic object, such as Millisecond Pulsars (MSP), low mass X-ray binaries(LMXB) or Blue Straggler Stars (BSS). In particular MSPs are formed in binary systems containing a Neutron Star which is spun up through mass accretion from the evolving companion (e.g. Bhattacharia & van den Heuvel 1991). The final stage of this recycling process is either the core of a peeled star (generally an Helium white dwarf) or a very light almos exhausted star, orbiting a very fast rotating Neutron Star (a MSP). Despite the large difference in total mass between the disk of the Galaxy and the Galactic GC system (up a factor 103), the percentage of fast rotating pulsar in binary systems found in the latter is very higher. MSPs in GCs show spin periods in the range 1.3 ÷ 30ms, slowdown rates ˙P 1019 s/s and a lower magnetic field, respect to ”normal” radio pulsars, B 108 gauss . The high probability of disruption of a binary systems after a supernova explosion, explain why we expect only a low percentage of recycled millisecond pulsars respect to the whole pulsar population. In fact only the 10% of the known 1800 radio pulsars are radio MSPs. Is not surprising, that MSP are overabundant in GCs respect to Galactic field, since in the Galactic Disk, MSPs can only form through the evolution of primordial binaries, and only if the binary survives to the supernova explosion which lead to the neutron star formation. On the other hand, the extremely high stellar density in the core of GCs, relative to most of the rest of the Galaxy, favors the formation of several different binary systems, suitable for the recycling of NSs (Davies at al. 1998). In this thesis we will present the properties two millisecond pulsars companions discovered in two globular clusters, the Helium white dwarf orbiting the MSP PSR 1911-5958A in NGC 6752 and the second case of a tidally deformed star orbiting an eclipsing millisecond pulsar, PSR J1701-3006B in NGC6266

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Thesis is to investigate (i) how common the bimodal Blue Straggler Stars (BSS) radial distribution is in stellar clusters and (ii) which are the physical processes that can produce this bimodality. We discuss possible relations between the properties of the BSS radial distribution and the dynamical state of the hosting clusters by making use of dynamical models and simulations. When relevant, we also discuss the possible links with some cluster "anomalies" and the effects of a massive object (like Imtermediate Mass Black Hole) in the cluster center. To this purpose we present the observational multiwavelength studies of the BSS populations and their radial distributions in 5 GGCs: M5, M55, M2, NGC 2419 and NGC 6388.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Phd thesis was entirely developed at the Telescopio Nazionale Galileo (TNG, Roque de los Muchachos, La Palma Canary Islands) with the aim of designing, developing and implementing a new Graphical User Interface (GUI) for the Near Infrared Camera Spectrometer (NICS) installed on the Nasmyth A of the telescope. The idea of a new GUI for NICS has risen for optimizing the astronomers work through a set of powerful tools not present in the existing GUI, such as the possibility to move automatically, an object on the slit or do a very preliminary images analysis and spectra extraction. The new GUI also provides a wide and versatile image display, an automatic procedure to find out the astronomical objects and a facility for the automatic image crosstalk correction. In order to test the overall correct functioning of the new GUI for NICS, and providing some information on the atmospheric extinction at the TNG site, two telluric standard stars have been spectroscopically observed within some engineering time, namely Hip031303 and Hip031567. The used NICS set-up is as follows: Large Field (0.25'' /pixel) mode, 0.5'' slit and spectral dispersion through the AMICI prism (R~100), and the higher resolution (R~1000) JH and HK grisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD Thesis is part of a long-term wide research project, carried out by the "Osservatorio Astronomico di Bologna (INAF-OABO)", that has as primary goal the comprehension and reconstruction of formation mechanism of galaxies and their evolution history. There is now substantial evidence, both from theoretical and observational point of view, in favor of the hypothesis that the halo of our Galaxy has been at least partially, built up by the progressive accretion of small fragments, similar in nature to the present day dwarf galaxies of the Local Group. In this context, the photometric and spectroscopic study of systems which populate the halo of our Galaxy (i.e. dwarf spheroidal galaxy, tidal streams, massive globular cluster, etc) permits to discover, not only the origin and behaviour of these systems, but also the structure of our Galactic halo, combined with its formation history. In fact, the study of the population of these objects and also of their chemical compositions, age, metallicities and velocity dispersion, permit us not only an improvement in the understanding of the mechanisms that govern the Galactic formation, but also a valid indirect test for cosmological model itself. Specifically, in this Thesis we provided a complete characterization of the tidal Stream of the Sagittarius dwarf spheroidal galaxy, that is the most striking example of the process of tidal disruption and accretion of a dwarf satellite in to our Galaxy. Using Red Clump stars, extracted from the catalogue of the Sloan Digital Sky Survey (SDSS) we obtained an estimate of the distance, the depth along the line of sight and of the number density for each detected portion of the Stream (and more in general for each detected structure along our line of sight). Moreover comparing the relative number (i.e. the ratio) of Blue Horizontal Branch stars and Red Clump stars (the two features are tracers of different age/different metallicity populations) in the main body of the galaxy and in the Stream, in order to verify the presence of an age-metallicity gradient along the Stream. We also report the detection of a population of Red Clump stars probably associated with the recently discovered Bootes III stellar system. Finally, we also present the results of a survey of radial velocities over a wide region, extending from r ~ 10' out to r ~ 80' within the massive star cluster Omega Centauri. The survey was performed with FLAMES@VLT, to study the velocity dispersion profile in the outer regions of this stellar system. All the results presented in this Thesis, have already been published in refeered journals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our view of Globular Clusters has deeply changed in the last decade. Modern spectroscopic and photometric data have conclusively established that globulars are neither coeval nor monometallic, reopening the issue of the formation of such systems. Their formation is now schematized as a two-step process, during which the polluted matter from the more massive stars of a first generation gives birth, in the cluster innermost regions, to a second generation of stars with the characteristic signature of fully CNO-processed matter. To date, star-to-star variations in abundances of the light elements (C, N, O, Na) have been observed in stars of all evolutionary phases in all properly studied Galactic globular clusters. Multiple or broad evolutionary sequences have also been observed in nearly all the clusters that have been observed with good signal-to-noise in the appropriate photometric bands. The body of evidence suggests that spreads in light-element abundances can be fairly well traced by photometric indices including near ultraviolet passbands, as CNO abundance variations affect mainly wavelengths shorter than ~400 nm owing to the rise of some NH and CN molecular absorption bands. Here, we exploit this property of near ultraviolet photometry to trace internal chemical variations and combined it with low resolution spectroscopy aimed to derive carbon and nitrogen abundances in order to maximize the information on the multiple populations. This approach has been proven to be very effective in (i) detecting multiple population, (ii) characterizing their global properties (i.e., relative fraction of stars, location in the color-magnitude diagram, spatial distribution, and trends with cluster parameters) and (iii) precisely tagging their chemical properties (i.e., extension of the C-N anticorrelation, bimodalities in the N content).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis two related arguments are investigated: - The first stages of the process of massive star formation, investigating the physical conditions and -properties of massive clumps in different evolutionary stages, and their CO depletion; - The influence that high-mass stars have on the nearby material and on the activity of star formation. I characterise the gas and dust temperature, mass and density of a sample of massive clumps, and analyse the variation of these properties from quiescent clumps, without any sign of active star formation, to clumps likely hosting a zero-age main sequence star. I briefly discuss CO depletion and recent observations of several molecular species, tracers of Hot Cores and/or shocked gas, of a subsample of these clumps. The issue of CO depletion is addressed in more detail in a larger sample consisting of the brightest sources in the ATLASGAL survey: using a radiative tranfer code I investigate how the depletion changes from dark clouds to more evolved objects, and compare its evolution to what happens in the low-mass regime. Finally, I derive the physical properties of the molecular gas in the photon-dominated region adjacent to the HII region G353.2+0.9 in the vicinity of Pismis 24, a young, massive cluster, containing some of the most massive and hottest stars known in our Galaxy. I derive the IMF of the cluster and study the star formation activity in its surroundings. Much of the data analysis is done with a Bayesian approach. Therefore, a separate chapter is dedicated to the concepts of Bayesian statistics.