1 resultado para Germinal cells
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The existence of Multiple Myeloma Stem cells (MMSCs)is supposed to be one of the major causes of MM drug-resistance. However, very little is known about the molecular characteristics of MMSCs, even if some studies suggested that these cells resembles the memory B cells. In order to molecularly characterize MMSCs, we isolated the 138+138- population. For each cell fraction we performed a VDJ rearrangement analysis. The complete set of aberrations were performed by SNP Array 6.0 and HG-U133 Plus 2.0 microarray analyses (Affymetrix). The VDJ rearrangement analyses confirmed the clonal relationship between the 138+ clone and the immature clone. Both BM and PBL 138+ clones showed exactly the same genomic macroalterations. In the BM and PBL 138-19+27+ cell fractions several micro-alterations (range: 1-350 Kb) unique of the memory B cells clone were highlighted. Any micro-alterations detected were located out of any genomic variants region and are presumably associated to the MM pathogenesis, as confirmed by the presence of KRAS, WWOX and XIAP genes among the amplified regions. To get insight into the biology of the clonotypic B cell population, we compared the gene expression profile of 8 MM B cells samples 5 donor B cells vs, thus showing a differential expression of 11480 probes (p-value: <0,05). Among the self-renewal mechanisms, we observed the down-regulation of Hedgehog pathway and the iperactivation of Notch and Wnt signaling. Moreover, these immature cells showed a particular phenotype correlated to resistance to proteasome inhibitors (IRE1α-XBP1: -18.0; -19.96. P<0,05). Data suggested that the MM 138+ clone might resume the end of the complex process of myelomagenesis, whereas the memory B cells have some intriguing micro-alterations and a specific transcriptional program, supporting the idea that these post germinal center cells might be involved in the transforming event that originate and sustain the neoplastic clone.