6 resultados para Genetic-basis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Durum wheat is the second most important wheat species worldwide and the most important crop in several Mediterranean countries including Italy. Durum wheat is primarily grown under rainfed conditions where episodes of drought and heat stress are major factors limiting grain yield. The research presented in this thesis aimed at the identification of traits and genes that underlie root system architecture (RSA) and tolerance to heat stress in durum wheat, in order to eventually contribute to the genetic improvement of this species. In the first two experiments we aimed at the identification of QTLs for root trait architecture at the seedling level by studying a bi-parental population of 176 recombinant inbred lines (from the cross Meridiano x Claudio) and a collection of 183 durum elite accessions. Forty-eight novel QTLs for RSA traits were identified in each of the two experiments, by means of linkage- and association mapping-based QTL analysis, respectively. Important QTLs controlling the angle of root growth in the seedling were identified. In a third experiment, we investigated the phenotypic variation of root anatomical traits by means of microscope-based analysis of root cross sections in 10 elite durum cultivars. The results showed the presence of sizeable genetic variation in aerenchyma-related traits, prompting for additional studies aimed at mapping the QTLs governing such variation and to test the role of aerenchyma in the adaptive response to abiotic stresses. In the fourth experiment, an association mapping experiment for cell membrane stability at the seedling stage (as a proxy trait for heat tolerance) was carried out by means of association mapping. A total of 34 QTLs (including five major ones), were detected. Our study provides information on QTLs for root architecture and heat tolerance which could potentially be considered in durum wheat breeding programs.
Resumo:
Leaf rust caused by Puccinia triticina is a serious disease of durum wheat (Triticum durum) worldwide. However, genetic and molecular mapping studies aimed at characterizing leaf rust resistance genes in durum wheat have been only recently undertaken. The Italian durum wheat cv. Creso shows a high level of resistance to P. triticina that has been considered durable and that appears to be due to a combination of a single dominant gene and one or more additional factors conferring partial resistance. In this study, the genetic basis of leaf rust resistance carried by Creso was investigated using 176 recombinant inbred lines (RILs) from the cross between the cv. Colosseo (C, leaf rust resistance donor) and Lloyd (L, susceptible parent). Colosseo is a cv. directly related to Creso with the leaf rust resistance phenotype inherited from Creso, and was considered as resistance donor because of its better adaptation to local (Emilia Romagna, Italy) cultivation environment. RILs have been artificially inoculated with a mixture of 16 Italian P. triticina isolates that were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each carrying a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci, in order to determine their specialization with regard to the host species. The characterization of the leaf rust isolates was conducted at the Cereal Disease Laboratory of the University of Minnesota (St. Paul, USA) (Chapter 2). A genetic linkage map was constructed using segregation data from the population of 176 RILs from the cross CL. A total of 662 loci, including 162 simple sequence repeats (SSRs) and 500 Diversity Arrays Technology markers (DArTs), were analyzed by means of the package EasyMap 0.1. The integrated SSR-DArT linkage map consisted of 554 loci (162 SSR and 392 DArT markers) grouped into 19 linkage blocks with an average marker density of 5.7 cM/marker. The final map spanned a total of 2022 cM, which correspond to a tetraploid genome (AABB) coverage of ca. 77% (Chapter 3). The RIL population was phenotyped for their resistance to leaf rust under artificial inoculation in 2006; the percentage of infected leaf area (LRS, leaf rust susceptibility) was evaluated at three stages through the disease developmental cycle and the area under disease progress curve (AUDPC) was then calculated. The response at the seedling stage (infection type, IT) was also investigated. QTL analysis was carried out by means of the Composite Interval Mapping method based on a selection of markers from the CL map. A major QTL (QLr.ubo-7B.2) for leaf rust resistance controlling both the seedling and the adult plant response, was mapped on the distal region of chromosome arm 7BL (deletion bin 7BL10-0.78-1.00), in a gene-dense region known to carry several genes/QTLs for resistance to rusts and other major cereal fungal diseases in wheat and barley. QLr.ubo-7B.2 was identified within a supporting interval of ca. 5 cM tightly associated with three SSR markers (Xbarc340.2, Xgwm146 e Xgwm344.2), and showed an R2 and an LOD peak value for the AUDPC equal to 72.9% an 44.5, respectively. Three additional minor QTLs were also detected (QLr.ubo-7B.1 on chr. 7BS; QLr.ubo-2A on chr. 2AL and QLr.ubo-3A on chr. 3AS) (Chapter 4). The presence of the major QTL (QLr.ubo-7B.2) was validated by a linkage disequilibrium (LD)-based test using field data from two different plant materials: i) a set of 62 advanced lines from multiple crosses involving Creso and his directly related resistance derivates Colosseo and Plinio, and ii) a panel of 164 elite durum wheat accessions representative of the major durum breeding program of the Mediterranean basin. Lines and accessions were phenotyped for leaf rust resistance under artificial inoculation in two different field trials carried out at Argelato (BO, Italy) in 2006 and 2007; the durum elite accessions were also evaluated in two additional field experiments in Obregon (Messico; 2007 and 2008) and in a green-house experiment (seedling resistance) at the Cereal Disease Laboratory (St. Paul, USA, 2008). The molecular characterization involved 14 SSR markers mapping on the 7BL chromosome region found to harbour the major QTL. Association analysis was then performed with a mixed-linear-model approach. Results confirmed the presence of a major QTL for leaf rust resistance, both at adult plant and at seedling stage, located between markers Xbarc340.2, Xgwm146 and Xgwm344.2, in an interval that coincides with the supporting interval (LOD-2) of QLr.ubo-7B.2 as resulted from the RIL QTL analysis. (Chapter 5). The identification and mapping of the major QTL associated to the durable leaf rust resistance carried by Creso, together with the identification of the associated SSR markers, will enhance the selection efficiency in durum wheat breeding programs (MAS, Marker Assisted Selection) and will accelerate the release of cvs. with durable resistance through marker-assisted pyramiding of the tagged resistance genes/QTLs most effective against wheat fungal pathogens.
Resumo:
Heavy pig breeding in Italy is mainly oriented for the production of high quality processed products. Of particular importance is the dry cured ham production, which is strictly regulated and requires specific carcass characteristics correlated with green leg characteristics. Furthermore, as pigs are slaughtered at about 160 kg live weight, the Italian pig breeding sector faces severe problems of production efficiency that are related to all biological aspects linked to growth, feed conversion, fat deposition and so on. It is well known that production and carcass traits are in part genetically determined. Therefore, as a first step to understand genetic basis of traits that could have a direct or indirect impact on dry cured ham production, a candidate gene approach can be used to identify DNA markers associated with parameters of economic importance. In this thesis, we investigated three candidate genes for carcass and production traits (TRIB3, PCSK1, MUC4) in pig breeds used for dry cured ham production, using different experimental approaches in order to find molecular markers associated with these parameters.
Resumo:
Multiparental cross designs for mapping quantitative trait loci (QTL) in crops are efficient alternatives to conventional biparental experimental populations because they exploit a broader genetic basis and higher mapping resolution. We describe the development and deployment of a multiparental recombinant inbred line (RIL) population in durum wheat (Triticum durum Desf.) obtained by crossing four elite cultivars characterized by different traits of agronomic value. A linkage map spanning 2,663 cM and including 7,594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs with a wheat-dedicated 90k SNP chip. A cluster file was developed for correct allele calling in the framework of the tetraploid durum wheat genome. Based on phenotypic data collected over four field experiments, a multi-trait quantitative trait loci (QTL) analysis was carried out for 18 traits of agronomic relevance (including yield, yield-components, morpho-physiological and seed quality traits). Across environments, a total of 63 QTL were identified and characterized in terms of the four founder haplotypes. We mapped two QTL for grain yield across environments and 23 QTL for grain yield components. A novel major QTL for number of grain per spikelet/ear was mapped on chr 2A and shown to control up to 39% of phenotypic variance in this cross. Functionally different QTL alleles, in terms of direction and size of genetic effect, were distributed among the four parents. Based on the occurrence of QTL-clusters, we characterized the breeding values (in terms of effects on yield) of most of QTL for heading and maturity as well as yield component and quality QTL. This multiparental RIL population provides the wheat community with a highly informative QTL mapping resource enabling the dissection of the genetic architecture of multiple agronomic relevant traits in durum wheat.
Resumo:
Durum wheat (Triticum durum) is an important crop that has been used for millennia for human consumption, and modern breeding can take advantage of the wide variability useful for the adaptation to new challenges. Novel beneficial alleles can be found in wild relatives and landraces thus enhancing crop adaptation to many biotic and abiotic stresses. This dissertation considers the source of variability from both before and after wheat domestication, that caused a loss of potentially useful alleles. Chapter 1. is the thesis introduction, which outlines the importance of wheat in the world, providing an historical overview of the domestication, the evolution mechanisms that led to the current forms of durum wheat and the use of wild relatives as a source of germplasm for future breeding programs is crucial. Moreover, the emergence of Z. tritici has been considered as the main pathogen of wheat since it contains extremely high levels of genetic variability and is thus difficult to control. Chapter 2. Considers the contribution of the phenotypic diversity of 242 accessions of Aegilops tauschii from the Open Wild Wheat Consortium, involved in wheat domestication, provided with whole-genome resequencing. The accessions were phenotyped both in the field and in controlled conditions and A k-mer-based GWAS was performed to identify genomic regions involved in useful traits. Chapter 3. Describes the genetic basis of resistance to Z. tritici in a durum wheat elite diversity panel representative of the germplasm bred in Mediterranean. Quantitative trait loci (QTL) analysis results revealed several loci involved in the STB response that were found in several chromosome regions with a high infection rate. The genomic regions associated with STB resistance identified in this study could be of interest for marker assisted selection (MAS) in durum wheat breeding programs.
Resumo:
The objective of this work is to characterize the genome of the chromosome 1 of A.thaliana, a small flowering plants used as a model organism in studies of biology and genetics, on the basis of a recent mathematical model of the genetic code. I analyze and compare different portions of the genome: genes, exons, coding sequences (CDS), introns, long introns, intergenes, untranslated regions (UTR) and regulatory sequences. In order to accomplish the task, I transformed nucleotide sequences into binary sequences based on the definition of the three different dichotomic classes. The descriptive analysis of binary strings indicate the presence of regularities in each portion of the genome considered. In particular, there are remarkable differences between coding sequences (CDS and exons) and non-coding sequences, suggesting that the frame is important only for coding sequences and that dichotomic classes can be useful to recognize them. Then, I assessed the existence of short-range dependence between binary sequences computed on the basis of the different dichotomic classes. I used three different measures of dependence: the well-known chi-squared test and two indices derived from the concept of entropy i.e. Mutual Information (MI) and Sρ, a normalized version of the “Bhattacharya Hellinger Matusita distance”. The results show that there is a significant short-range dependence structure only for the coding sequences whose existence is a clue of an underlying error detection and correction mechanism. No doubt, further studies are needed in order to assess how the information carried by dichotomic classes could discriminate between coding and noncoding sequence and, therefore, contribute to unveil the role of the mathematical structure in error detection and correction mechanisms. Still, I have shown the potential of the approach presented for understanding the management of genetic information.