5 resultados para Gasoline Anti-knock and anti-knock mixtures Analysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The importance of the banks and financial markets relies on the fact that they promote economic efficiency by allocating savings efficiently to profitable investment opportunities.An efficient banking system is a key determinant for the financial stability.The theory of market failure forms the basis for understanding financial regulation.Following the detrimental economic and financial consequences in theaftermath of the crisis, academics and policymakers started to focus their attention on the construction of an appropriate regulatory and supervisory framework of the banking sector. This dissertation aims at understanding the impact of regulations and supervision on banks’ performance focusing on two emerging market economies, Turkey and Russia. It aims at examining the way in which regulations matter for financial stability and banking performance from a law & economics perspective. A review of the theory of banking regulation, particularly as applied to emerging economies, shows that the efficiency of certain solutions regarding banking regulation is open to debate. Therefore, in the context of emerging countries, whether a certain approach is efficient or not will be presented as an empirical question to which this dissertation will try to find an answer.
Resumo:
This thesis is a collection of works focused on the topic of Earthquake Early Warning, with a special attention to large magnitude events. The topic is addressed from different points of view and the structure of the thesis reflects the variety of the aspects which have been analyzed. The first part is dedicated to the giant, 2011 Tohoku-Oki earthquake. The main features of the rupture process are first discussed. The earthquake is then used as a case study to test the feasibility Early Warning methodologies for very large events. Limitations of the standard approaches for large events arise in this chapter. The difficulties are related to the real-time magnitude estimate from the first few seconds of recorded signal. An evolutionary strategy for the real-time magnitude estimate is proposed and applied to the single Tohoku-Oki earthquake. In the second part of the thesis a larger number of earthquakes is analyzed, including small, moderate and large events. Starting from the measurement of two Early Warning parameters, the behavior of small and large earthquakes in the initial portion of recorded signals is investigated. The aim is to understand whether small and large earthquakes can be distinguished from the initial stage of their rupture process. A physical model and a plausible interpretation to justify the observations are proposed. The third part of the thesis is focused on practical, real-time approaches for the rapid identification of the potentially damaged zone during a seismic event. Two different approaches for the rapid prediction of the damage area are proposed and tested. The first one is a threshold-based method which uses traditional seismic data. Then an innovative approach using continuous, GPS data is explored. Both strategies improve the prediction of large scale effects of strong earthquakes.
Resumo:
This thesis provides a thoroughly theoretical background in network theory and shows novel applications to real problems and data. In the first chapter a general introduction to network ensembles is given, and the relations with “standard” equilibrium statistical mechanics are described. Moreover, an entropy measure is considered to analyze statistical properties of the integrated PPI-signalling-mRNA expression networks in different cases. In the second chapter multilayer networks are introduced to evaluate and quantify the correlations between real interdependent networks. Multiplex networks describing citation-collaboration interactions and patterns in colorectal cancer are presented. The last chapter is completely dedicated to control theory and its relation with network theory. We characterise how the structural controllability of a network is affected by the fraction of low in-degree and low out-degree nodes. Finally, we present a novel approach to the controllability of multiplex networks
Resumo:
Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.
Resumo:
The production rate of $b$ and $\bar{b}$ hadrons in $pp$ collisions are not expected to be strictly identical, due to imbalance between quarks and anti-quarks in the initial state. This phenomenon can be naively related to the fact that the $\bar{b}$ quark produced in the hard scattering might combine with a $u$ or $d$ valence quark from the colliding protons, whereas the same cannot happen for a $b$ quark. This thesis presents the analysis performed to determine the production asymmetries of $B^0$ and $B^0_s$. The analysis relies on data samples collected by the LHCb detector at the Large Hadron Collider (LHC) during the 2011 and 2012 data takings at two different values of the centre of mass energy $\sqrt{s}=7$ TeV and at $\sqrt{s}=8$ TeV, corresponding respectively to an integrated luminosity of 1 fb$^{-1}$ and of 2 fb$^{-1}$. The production asymmetry is one of the key ingredients to perform measurements of $CP$ violation in b-hadron decays at the LHC, since $CP$ asymmetries must be disentangled from other sources. The measurements of the production asymmetries are performed in bins of $p_\mathrm{T}$ and $\eta$ of the $B$-meson. The values of the production asymmetries, integrated in the ranges $4 < p_\mathrm{T} < 30$ GeV/c and $2.5<\eta<4.5$, are determined to be: \begin{equation} A_\mathrm{P}(\B^0)= (-1.00\pm0.48\pm0.29)\%,\nonumber \end{equation} \begin{equation} A_\mathrm{P}(\B^0_s)= (\phantom{-}1.09\pm2.61\pm0.61)\%,\nonumber \end{equation} where the first uncertainty is statistical and the second is systematic. The measurement of $A_\mathrm{P}(B^0)$ is performed using the full statistics collected by LHCb so far, corresponding to an integrated luminosity of 3 fb$^{-1}$, while the measurement of $A_\mathrm{P}(B^0_s)$ is realized with the first 1 fb$^{-1}$, leaving room for improvement. No clear evidence of dependences on the values of $p_\mathrm{T}$ and $\eta$ is observed. The results presented in this thesis are the most precise measurements available up to date.