10 resultados para Gas chromatography--Industrial applications.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present PhD thesis was focused on the development and application of chemical methodology (Py-GC-MS) and data-processing method by multivariate data analysis (chemometrics). The chromatographic and mass spectrometric data obtained with this technique are particularly suitable to be interpreted by chemometric methods such as PCA (Principal Component Analysis) as regards data exploration and SIMCA (Soft Independent Models of Class Analogy) for the classification. As a first approach, some issues related to the field of cultural heritage were discussed with a particular attention to the differentiation of binders used in pictorial field. A marker of egg tempera the phosphoric acid esterified, a pyrolysis product of lecithin, was determined using HMDS (hexamethyldisilazane) rather than the TMAH (tetramethylammonium hydroxide) as a derivatizing reagent. The validity of analytical pyrolysis as tool to characterize and classify different types of bacteria was verified. The FAMEs chromatographic profiles represent an important tool for the bacterial identification. Because of the complexity of the chromatograms, it was possible to characterize the bacteria only according to their genus, while the differentiation at the species level has been achieved by means of chemometric analysis. To perform this study, normalized areas peaks relevant to fatty acids were taken into account. Chemometric methods were applied to experimental datasets. The obtained results demonstrate the effectiveness of analytical pyrolysis and chemometric analysis for the rapid characterization of bacterial species. Application to a samples of bacterial (Pseudomonas Mendocina), fungal (Pleorotus ostreatus) and mixed- biofilms was also performed. A comparison with the chromatographic profiles established the possibility to: • Differentiate the bacterial and fungal biofilms according to the (FAMEs) profile. • Characterize the fungal biofilm by means the typical pattern of pyrolytic fragments derived from saccharides present in the cell wall. • Individuate the markers of bacterial and fungal biofilm in the same mixed-biofilm sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design parameters, process flows, electro-thermal-fluidic simulations and experimental characterizations of Micro-Electro-Mechanical-Systems (MEMS) suited for gas-chromatographic (GC) applications are presented and thoroughly described in this thesis, whose topic belongs to the research activities the Institute for Microelectronics and Microsystems (IMM)-Bologna is involved since several years, i.e. the development of micro-systems for chemical analysis, based on silicon micro-machining techniques and able to perform analysis of complex gaseous mixtures, especially in the field of environmental monitoring. In this regard, attention has been focused on the development of micro-fabricated devices to be employed in a portable mini-GC system for the analysis of aromatic Volatile Organic Compounds (VOC) like Benzene, Toluene, Ethyl-benzene and Xylene (BTEX), i.e. chemical compounds which can significantly affect environment and human health because of their demonstrated carcinogenicity (benzene) or toxicity (toluene, xylene) even at parts per billion (ppb) concentrations. The most significant results achieved through the laboratory functional characterization of the mini-GC system have been reported, together with in-field analysis results carried out in a station of the Bologna air monitoring network and compared with those provided by a commercial GC system. The development of more advanced prototypes of micro-fabricated devices specifically suited for FAST-GC have been also presented (silicon capillary columns, Ultra-Low-Power (ULP) Metal OXide (MOX) sensor, Thermal Conductivity Detector (TCD)), together with the technological processes for their fabrication. The experimentally demonstrated very high sensitivity of ULP-MOX sensors to VOCs, coupled with the extremely low power consumption, makes the developed ULP-MOX sensor the most performing metal oxide sensor reported up to now in literature, while preliminary test results proved that the developed silicon capillary columns are capable of performances comparable to those of the best fused silica capillary columns. Finally, the development and the validation of a coupled electro-thermal Finite Element Model suited for both steady-state and transient analysis of the micro-devices has been described, and subsequently implemented with a fluidic part to investigate devices behaviour in presence of a gas flowing with certain volumetric flow rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical pyrolysis was used to investigate the formation of diketopiperazines (DKPs) which are cyclic dipeptides formed from the thermal degradation of proteins. A quali/quantitative procedure was developed combining microscale flash pyrolysis at 500 °C with gas chromatography-mass spectrometry (GC-MS) of DKPs trapped onto an adsorbent phase. Polar DKPs were silylated prior to GC-MS. Particular attention was paid to the identification of proline (Pro) containing DKPs due to their greater facility of formation. The GC-MS characteristics of more than 80 original and silylated DKPs were collected from the pyrolysis of sixteen linear dipeptides and four model proteins (e.g. bovine serum albumin, BSA). The structure of a novel DKP, cyclo(pyroglutamic-Pro) was established by NMR and ESI-MS analysis, while the structures of other novel DKPs remained tentative. DKPs resulted rather specific markers of amino acid sequence in proteins, even though the thermal degradation of DKPs should be taken into account. Structural information of DKPs gathered from the pyrolysis of model compounds was employed to the identification of these compounds in the pyrolysate of proteinaceous samples, including intrinsecally unfolded protein (IUP). Analysis of the liquid fraction (bio-oil) obtained from the pyrolysis of microalgae Nannochloropsis gaditana, Scenedesmus spp with a bench scale reactor showed that DKPs constituted an important pool of nitrogen-containing compounds. Conversely, the level of DKPs was rather low in the bio-oil of Botryococcus braunii. The developed micropyrolysis procedure was applied in combination with thermogravimetry (TGA) and infrared spectroscopy (FT-IR) to investigate surface interaction between BSA and synthetic chrysotile. The results showed that the thermal behavior of BSA (e.g. DKPs formation) was affected by the different form of doped synthetic chrysotile. The typical DKPs evolved from collagen were quantified in the pyrolysates of archaeological bones from Vicenne Necropolis in order to evaluate their conservation status in combination with TGA, FTIR and XRD analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organotin compounds have found in the last few decades a wide variety of applications. Indeed, they are used successfully as antifouling paints, PVC stabilizers and ion carriers, as well as homogeneous catalysts. In this context, it has been proved that the Lewis acidity of the metal centre allows these compounds to promote the reaction between alcohol and ester. However their use is now limited by their well-known toxicity, moreover they are hardly removable from the reaction mixture. This problem can be overcome by grafting the organotin derivative onto a polymeric cross-linked support. In this way the obtained heterogeneous catalyst can be easily filtered off from the reaction mixture, thus creating the so-called "clean organotin reagents", avoiding the presence of toxic organotin residues in solution and the tin release in the environment. In the last few years several insoluble polystyrene resins containing triorganotin carboxylate moieties have been synthesized with the aim of improving their catalytic activity: in particular we have investigated and opportunely modified their chemical structure in order to optimize the accessibility to the metal centre and its Lewis acidity. Recently, we replaced the polymeric matrix with an inorganic one, in order to dispose of a relatively cheaper and easily available support. For this purpose an ordered mesoporous silica, characterized by 2D-hexagonal pores, named MCM-41, and an amorphous silica have been selected. In the present work two kinds of MCM-41 silica containing the triorganotin carboxylate moiety have been synthesized starting from a commercial Cab-O-Sil M5 silica. These catalysts have two different spacers between the core and the tin-carboxylate moiety, namely a polyaliphatic chain (compound FT29) or a poliethereal one (compound FT6), with the aim to improve the interaction between catalyst and reacting ester. Three catalysts supported onto an amorphous silica have been also synthesized: the structure is the same as silica FT29, i.e. a compound having a polialiphatic chain, and they have different percentage of organotin derivative grafted on the silica surface (10, 30, 50% respectively for silica MB9, SU27 and SU28). The performances of the above silica as heterogeneous catalysts in transesterification reactions have been tested in a model reaction between ethyl acetate and 1-octanol, a primary alcohol sensitive to the reaction conditions. The alcohol conversion was assessed by gas-chromatography, determining the relative amount of transesterified product and starting alcohol after established time intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays microfluidic is becoming an important technology in many chemical and biological processes and analysis applications. The potential to replace large-scale conventional laboratory instrumentation with miniaturized and self-contained systems, (called lab-on-a-chip (LOC) or point-of-care-testing (POCT)), offers a variety of advantages such as low reagent consumption, faster analysis speeds, and the capability of operating in a massively parallel scale in order to achieve high-throughput. Micro-electro-mechanical-systems (MEMS) technologies enable both the fabrication of miniaturized system and the possibility of developing compact and portable systems. The work described in this dissertation is towards the development of micromachined separation devices for both high-speed gas chromatography (HSGC) and gravitational field-flow fractionation (GrFFF) using MEMS technologies. Concerning the HSGC, a complete platform of three MEMS-based GC core components (injector, separation column and detector) is designed, fabricated and characterized. The microinjector consists of a set of pneumatically driven microvalves, based on a polymeric actuating membrane. Experimental results demonstrate that the microinjector is able to guarantee low dead volumes, fast actuation time, a wide operating temperature range and high chemical inertness. The microcolumn consists of an all-silicon microcolumn having a nearly circular cross-section channel. The extensive characterization has produced separation performances very close to the theoretical ideal expectations. A thermal conductivity detector (TCD) is chosen as most proper detector to be miniaturized since the volume reduction of the detector chamber results in increased mass and reduced dead volumes. The microTDC shows a good sensitivity and a very wide dynamic range. Finally a feasibility study for miniaturizing a channel suited for GrFFF is performed. The proposed GrFFF microchannel is at early stage of development, but represents a first step for the realization of a highly portable and potentially low-cost POCT device for biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.