8 resultados para GENERALIZED WEYL ALGEBRA
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The need for a convergence between semi-structured data management and Information Retrieval techniques is manifest to the scientific community. In order to fulfil this growing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of XQuery. However, the issue of query optimization requires the study of important properties like query equivalence and containment; to this aim, a formal representation of document and queries is needed. The goal of this thesis is to establish such formal background. We define a data model for XML documents and propose an algebra able to represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text expression can be translated into an algebraic expression and how an algebraic expression can be optimized.
Resumo:
In this thesis work I analyze higher spin field theories from a first quantized perspective, finding in particular new equations describing complex higher spin fields on Kaehler manifolds. They are studied by means of worldline path integrals and canonical quantization, in the framework of supersymmetric spinning particle theories, in order to investigate their quantum properties both in flat and curved backgrounds. For instance, by quantizing a spinning particle with one complex extended supersymmetry, I describe quantum massless (p,0)-forms and find a worldline representation for their effective action on a Kaehler background, as well as exact duality relations. Interesting results are found also in the definition of the functional integral for the so called O(N) spinning particles, that will allow to study real higher spins on curved spaces. In the second part, I study Weyl invariant field theories by using a particular mathematical framework known as tractor calculus, that enable to maintain at each step manifest Weyl covariance.
Resumo:
The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.
Resumo:
In 'Involutory reflection groups and their models' (F. Caselli, 2010), a uniform Gelfand model is constructed for all complex reflection groups G(r,p,n) satisfying GCD(p,n)=1,2 and for all their quotients modulo a scalar subgroup. The present work provides a refinement for this model. The final decomposition obtained is compatible with the Robinson-Schensted generalized correspondence.
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.
Resumo:
Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).
Resumo:
In this work, the Generalized Beam Theory (GBT) is used as the main tool to analyze the mechanics of thin-walled beams. After an introduction to the subject and a quick review of some of the most well-known approaches to describe the behaviour of thin-walled beams, a novel formulation of the GBT is presented. This formulation contains the classic shear-deformable GBT available in the literature and contributes an additional description of cross-section warping that is variable along the wall thickness besides along the wall midline. Shear deformation is introduced in such a way that the classical shear strain components of the Timoshenko beam theory are recovered exactly. According to the new kinematics proposed, a reviewed form of the cross-section analysis procedure is devised, based on a unique modal decomposition. Later, a procedure for a posteriori reconstruction of all the three-dimensional stress components in the finite element analysis of thin-walled beams using the GBT is presented. The reconstruction is simple and based on the use of three-dimensional equilibrium equations and of the RCP procedure. Finally, once the stress reconstruction procedure is presented, a study of several existing issues on the constitutive relations in the GBT is carried out. Specifically, a constitutive law based on mirroring the kinematic constraints of the GBT model into a specific stress field assumption is proposed. It is shown that this method is equally valid for isotropic and orthotropic beams and coincides with the conventional GBT approach available in the literature. Later on, an analogous procedure is presented for the case of laminated beams. Lastly, as a way to improve an inherently poor description of shear deformability in the GBT, the introduction of shear correction factors is proposed. Throughout this work, numerous examples are provided to determine the validity of all the proposed contributions to the field.
Resumo:
The major index has been deeply studied from the early 1900s and recently has been generalized in different directions, such as the case of labeled forests and colored permutations. In this thesis we define new types of labelings for forests in which the labels are colored integers. We extend the definition of the flag-major index for these labelings and we present an analogue of well known major index hook length formulas. Finally, this study (which has just apparently a simple combinatoric nature) allows us to show a notion of duality for two particular families of groups obtained from the product G(r,n)×G(r,m).