15 resultados para GASOLINE
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This PhD thesis reports the main activities carried out during the 3 years long “Mechanics and advanced engineering sciences” course, at the Department of Industrial Engineering of the University of Bologna. The research project title is “Development and analysis of high efficiency combustion systems for internal combustion engines” and the main topic is knock, one of the main challenges for boosted gasoline engines. Through experimental campaigns, modelling activity and test bench validation, 4 different aspects have been addressed to tackle the issue. The main path goes towards the definition and calibration of a knock-induced damage model, to be implemented in the on-board control strategy, but also usable for the engine calibration and potentially during the engine design. Ionization current signal capabilities have been investigated to fully replace the pressure sensor, to develop a robust on-board close-loop combustion control strategy, both in knock-free and knock-limited conditions. Water injection is a powerful solution to mitigate knock intensity and exhaust temperature, improving fuel consumption; its capabilities have been modelled and validated at the test bench. Finally, an empiric model is proposed to predict the engine knock response, depending on several operating condition and control parameters, including injected water quantity.
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
A wall film model has been implemented in a customized version of KIVA code developed at University of Bologna. Under the hypothesis of `thin laminar ow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film. The governing equations have been integrated in space by using a finite volume approach with a first order upwind differencing scheme and they have been integrated in time with a fully explicit method. The model is validated using two different test cases reproducing PFI gasoline and DI Diesel engine wall film conditions.
Resumo:
This work describes the development of a simulation tool which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics. It is a control oriented simulation tool, designed in order to perform both off-line (Software In the Loop) and on-line (Hardware In the Loop) simulation. In the first case the simulation tool can be used in order to optimize Engine Control Unit strategies (as far as regard, for example, the fuel consumption or the performance of the engine), while in the second case it can be used in order to test the control system. In recent years the use of HIL simulations has proved to be very useful in developing and testing of control systems. Hardware In the Loop simulation is a technology where the actual vehicles, engines or other components are replaced by a real time simulation, based on a mathematical model and running in a real time processor. The processor reads ECU (Engine Control Unit) output signals which would normally feed the actuators and, by using mathematical models, provides the signals which would be produced by the actual sensors. The simulation tool, fully designed within Simulink, includes the possibility to simulate the only engine, the transmission and vehicle dynamics and the engine along with the vehicle and transmission dynamics, allowing in this case to evaluate the performance and the operating conditions of the Internal Combustion Engine, once it is installed on a given vehicle. Furthermore the simulation tool includes different level of complexity, since it is possible to use, for example, either a zero-dimensional or a one-dimensional model of the intake system (in this case only for off-line application, because of the higher computational effort). Given these preliminary remarks, an important goal of this work is the development of a simulation environment that can be easily adapted to different engine types (single- or multi-cylinder, four-stroke or two-stroke, diesel or gasoline) and transmission architecture without reprogramming. Also, the same simulation tool can be rapidly configured both for off-line and real-time application. The Matlab-Simulink environment has been adopted to achieve such objectives, since its graphical programming interface allows building flexible and reconfigurable models, and real-time simulation is possible with standard, off-the-shelf software and hardware platforms (such as dSPACE systems).
Resumo:
Combustion control is one of the key factors to obtain better performances and lower pollutant emissions for diesel, spark ignition and HCCI engines. An algorithm that allows estimating, as an example, the mean indicated torque for each cylinder, could be easily used in control strategies, in order to carry out cylinders trade-off, control the cycle to cycle variation, or detect misfires. A tool that allows evaluating the 50% of Mass Fraction Burned (MFB50), or the net Cumulative Heat Release (CHRNET), or the ROHR peak value (Rate of Heat Release), could be used to optimize spark advance or to detect knock in gasoline engines and to optimize injection pattern in diesel engines. Modern management systems are based on the control of the mean indicated torque produced by the engine: they need a real or virtual sensor in order to compare the measured value with the target one. Many studies have been performed in order to obtain an accurate and reliable over time torque estimation. The aim of this PhD activity was to develop two different algorithms: the first one is based on the instantaneous engine speed fluctuations measurement. The speed signal is picked up directly from the sensor facing the toothed wheel mounted on the engine for other control purposes. The engine speed fluctuation amplitudes depend on the combustion and on the amount of torque delivered by each cylinder. The second algorithm processes in-cylinder pressure signals in the angular domain. In this case a crankshaft encoder is not necessary, because the angular reference can be obtained using a standard sensor wheel. The results obtained with these two methodologies are compared in order to evaluate which one is suitable for on board applications, depending on the accuracy required.
Resumo:
In gasoline Port Fuel Injection (PFI) and Direct Injection (GDI) internal combustion engines, the liquid fuel might be injected into a gaseous ambient in a superheated state, resulting in flash boiling of the fuel. The importance to investigate and predict such a process is due to the influence it has on the liquid fuel atomization and vaporization and thus on combustion, with direct implications on engine performances and exhaust gas emissions. The topic of the present PhD research involves the numerical analysis of the behaviour of the superheated fuel during the injection process, in high pressure injection systems like the ones equipping GDI engines. Particular emphasis is on the investigation of the effects of the fuel superheating degree on atomization dynamics and spray characteristics. The present work is a look at the flash evaporation and flash boiling modeling, from an engineering point of view, addressed to keep the complex physics involved as simple as possible, however capturing the main characteristics of a superheated fuel injection.
Resumo:
In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on the liquid (bio-oil) and solid (char) fractions obtainable from biomass pyrolysis. The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with derivatization procedures). The application of different techniques allowed a satisfactory comparative analysis of pyrolysis products of different biomass and a high throughput screening on effect of 33 catalysts on biomass pyrolysis. As the results of the screening showed, the most interesting catalysts were those containing copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). In order to establish the noxious compounds content of the liquid product, a clean-up step was included in the Py-SPE procedure. This allowed to investigate pollutants (PAHs) generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-oil up-grading determined an astonishing high production of PAHs (if compared to what observed in alkanes cracking), indicating an important concern in the substitution fossil fuel with bio-oil derived from biomass. Moreover, the analytical procedures developed in this thesis were directly applied for the detailed study of the most useful process scheme and up-grading route to chemical intermediates (anhydrosugars), transportation fuels or commodity chemicals (aromatic hydrocarbons). In the applied study, poplar and microalgae biomass were investigated and overall GHGs balance of pyrolysis of agricultural residues in Ravenna province was performed. A special attention was put on the comparison of the effect of bio-char different use (fuel or as soil conditioner) on the soil health and GHGs emissions.
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.
Resumo:
The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.
Resumo:
Zero-carbon powertrains development has become one of the main challenges for automotive industries around the world. Following this guideline, several approaches such as powertrain electrification, advanced combustions, and hydrogen internal combustion engines have been aimed to achieve the goal. Low Temperature Combustions, characterized by a simultaneous reduction of fuel consumption and emissions, represent one of the most studied solutions moving towards a sustainable mobility. Previous research demonstrate that Gasoline partially premixed Compression Ignition combustion is one of the most promising LTC. Mainly characterized by the high-pressure direct-injection of gasoline and the spontaneous ignition of the premixed air-fuel mixture, GCI combustion has shown a good potential to achieve the high thermal efficiency and low pollutants in compression ignited engines required by future emission regulations. Despite its potential, GCI combustion might suffer from low combustion controllability and stability, because gasoline spontaneous ignition is significantly affected by slight variations of the local in-cylinder thermal conditions. Therefore, to properly control GCI combustion assuring the maximum performance, a deep knowledge of the combustion process, i.e., gasoline auto-ignition and the effect of the control parameters on the combustion and pollutants, is mandatory. This PhD dissertation focuses on the study of GCI combustion in a light-duty compression ignited engine. Starting from a standard 1.3L diesel engine, this work describes the activities made moving toward the full conversion of the engine. A preliminary study of the GCI combustion was conducted in a “Single-Cylinder” engine configuration highlighting combustion characteristics and dependencies on the control parameters. Then, the full engine conversion was performed, and a wide experimental campaign allowed to confirm the benefits of this advanced combustion methodologies in terms of pollutants and thermal efficiency. The analysis of the in-cylinder pressure signal allowed to study in depth the GCI combustion and develop control-oriented models aimed to improve the combustion stability.
Resumo:
The pursuit of decarbonization and increased efficiency in internal combustion engines (ICE) is crucial for reducing pollution in the mobility sector. While electrification is a long-term goal, ICE still has a role to play if coupled with innovative technologies. This research project explores various solutions to enhance ICE efficiency and reduce emissions, including Low Temperature Combustion (LTC), Dual fuel combustion with diesel and natural gas, and hydrogen integration. LTC methods like Dual fuel and Reactivity Controlled Compression Ignition (RCCI) show promise in lowering emissions such as NOx, soot, and CO2. Dual fuel Diesel-Natural Gas with hydrogen addition demonstrates improved efficiency, especially at low loads. RCCI Diesel-Gasoline engines offer increased Brake Thermal Efficiency (BTE) compared to standard diesel engines while reducing specific NOx emissions. The study compares 2-Stroke and 4-Stroke engine layouts, optimizing scavenging systems for both aircraft and vehicle applications. CFD analysis enhances specific power output while addressing injection challenges to prevent exhaust short circuits. Additionally, piston bowl shape optimization in Diesel engines running on Dual fuel (Diesel-Biogas) aims to reduce NOx emissions and enhance thermal efficiency. Unconventional 2-Stroke architectures, such as reverse loop scavenged with valves for high-performance cars, opposed piston engines for electricity generation, and small loop scavenged engines for scooters, are also explored. These innovations, alongside ultra-lean hydrogen combustion, offer diverse pathways toward achieving climate neutrality in the transport sector.