6 resultados para G-extremal processes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dichloroindium hydride revealed to be a valid alternative to tributyltin hydride for radical reduction of organic (alkyl, aryl, acyl, solfonyl) azides. The new approach entails mild reaction conditions and provides high yields of the corresponding amines and amides, also showing high degrees of selectivity. The system dichloroindium hydride / azides can be utilised in fivemembered ring closures of g-azidonitriles, as a new source of aminyl radicals for the attractive synthesis of interesting amidine compounds in the absence of both toxic reagents and tedious purification procedures. Allylindium dichloride seems a good substitute for dichloroindium hydride for generation of indium centred radicals under photolytic conditions, since it allows allylation of electrophilic azides (e.g. phenylsulfonyl azide) and halogen or ester δ-substituted azides, the latter through a 1,5-H transfer rearrangement mechanism. Evidences of the radical nature of the reactions mechanism were provided by ESR spectroscopy, furthermore the same technique, allowed to discover that the reaction of azides with indium trichloride and other group XIII Lewis acids, in particular gallium trichloride, gives rise to strongly coloured, persistent paramagnetic species, whose structure is consistent with the radical cation of the head-to-tail dimer of the aniline corresponding to the starting azide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this PhD-thesis, two methodologies for enantioselective intramolecular ring closing reaction on indole cores are presented. The first methodology represents a highly stereoselective alkylation of the indole N1-nitrogen, leading to 3,4-dihydro-pyrazinoindol-1-ones – a structural class which is known for its activity on the CNS and therefore of high pharmacological interest concerning related diseases. In this approach, N-benzyl cinchona-alkaloids were used for the efficient catalysis of intramolecular aza-Michael reactions. Furthermore, computational studies in collaboration with the research group Prof. Andrea Bottoni (Department of Chemistry “G. Ciamician”, Bologna) were accomplished in order to get insight into the key interactions between catalyst and substrate, leading to enantiomeric excesses up to 91%. The results of the calculations on a model system are in accordance with the experimental results and demonstrate the high sensibility of the system towards structural modifications. The second project deals with a metal catalyzed, intramolecular Friedel-Crafts (FC)-reaction on indolyl substrates, carrying a side chain which on its behalf is furnished with an allylic alcohol unit. Allylic alcohols are part of the structural class of “π-activated alcohols” – alcohols, which are more easily activated due to the proximity to a π-unit (allyl-, propargyl-, benzyl-). The enantioselective intramolecular cyclization event is catalyzed efficiently by employment of a chiral Au(I)-catalyst, leading to 1-vinyl- or 4-vinyl-tetrahydrocarbazoles (THCs) under the formation of water as byproduct. This striking and novel process concerning the direct activation of alcohols in catalytic FC-reactions was subsequently extended to similar precursors, leading to functionalized tetrahydro-β-carbolines. These two methodologies represent highly efficient approaches towards the synthesis of scaffolds, which are of enormous pharmaceutical interest and amplify the spectra of enantioselective catalytic functionalisations of indoles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.