4 resultados para Gène Polycomb Bmi1

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La labioschisi con o senza palatoschisi non-sindromica (NSCL/P) è tra le più frequenti alterazioni dello sviluppo embrionale, causata dall’interazione di fattori genetici e ambientali, moti dei quali ancora ignoti. L'obiettivo del mio progetto di Dottorato consiste nell’identificazione di fattori di rischio genetico in un processo a due stadi che prevede la selezione di geni candidati e la verifica del loro coinvolgimento nella determinazione della malformazione mediante studi di associazione. Ho analizzato alcuni polimorfismi a singolo nucleotide (SNPs) dei geni RFC1 e DHFR, appartenenti alla via metabolica dell’acido folico, evidenziando una debole associazione tra alcuni degli SNPs indagati e la NSCL/P nella popolazione italiana. Presso il laboratorio della Dott.ssa Mangold dell’Università di Bonn, ho valutato il ruolo di 15 diverse regioni cromosomiche nel determinare la suscettibilità alla malattia, evidenziando una significativa associazione per i marcatori localizzati in 8q24 e 1p22. Ho quindi rivolto la mia attenzione al ruolo del complesso Polycomb nell’insorgenza della schisi. Nell’uomo i due complessi Polycomb, PRC1 e PRC2, rimodellano la cromatina agendo da regolatori dei meccanismi trascrizionali alla base della differenziazione cellulare e dello sviluppo embrionale. Ho ipotizzato che mutazioni a carico di geni appartenenti a PRC2 possano essere considerati potenziali fattori di rischio genetico nel determinare la NSCL/P. Il razionale consiste nel fatto che JARID2, una proteina che interagisce con PRC2, è associata all’insorgenza della NSCL/P ed espressa a livello delle cellule epiteliali delle lamine palatine che si approssimano alla fusione. L’indagine condotta analizzando i geni di elementi o partner dei due complessi Polycomb, ha evidenziato un’associazione significativa con alcuni polimorfismi dei geni indagati, associazione ulteriormente confermata dall’analisi degli aplotipi. Le analisi condotte sui geni candidati mi hanno permesso di raccogliere dati interessanti sull’eziologia della malformazione. Studi indipendenti saranno necessari per poter validare l'associazione tra le varianti genetiche di questi geni candidati e la NSCL/P.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Myc oncoproteins belong to a family of transcription factors composed by Myc, N-Myc and L-Myc. The most studied components of this family are Myc and N-Myc because their expressions are frequently deregulated in a wide range of cancers. These oncoproteins can act both as activators or repressors of gene transcription. As activators, they heterodimerize with Max (Myc associated X-factor) and the heterodimer recognizes and binds a specific sequence elements (E-Box) onto gene promoters recruiting histone acetylase and inducing transcriptional activation. Myc-mediated transcriptional repression is a quite debated issue. One of the first mechanisms defined for the Myc-mediated transcriptional repression consisted in the interaction of Myc-Max complex Sp1 and/or Miz1 transcription factors already bound to gene promoters. This interaction may interfere with their activation functions by recruiting co-repressors such as Dnmt3 or HDACs. Moreover, in the absence of , Myc may interfere with the Sp1 activation function by direct interaction and subsequent recruitment of HDACs. More recently the Myc/Max complex was also shown to mediate transcriptional repression by direct binding to peculiar E-box. In this study we analyzed the role of Myc overexpression in Osteosarcoma and Neuroblastoma oncogenesis and the mechanisms underling to Myc function. Myc overexpression is known to correlate with chemoresistance in Osteosarcoma cells. We extended this study by demonstrating that c-Myc induces transcription of a panel of ABC drug transporter genes. ABCs are a large family trans-membrane transporter deeply involved in multi drug resistance. Furthermore expression levels of Myc, ABCC1, ABCC4 and ABCF1 were proved to be important prognostic tool to predict conventional therapy failure. N-Myc amplification/overexpression is the most important prognostic factor for Neuroblastoma. Cyclin G2 and Clusterin are two genes often down regulated in neuroblastoma cells. Cyclin G2 is an atypical member of Cyclin family and its expression is associated with terminal differentiation and apoptosis. Moreover it blocks cell cycle progression and induces cell growth arrest. Instead, CLU is a multifunctional protein involved in many physiological and pathological processes. Several lines of evidences support the view that CLU may act as a tumour suppressor in Neuroblastoma. In this thesis I showed that N-Myc represses CCNG2 and CLU transcription by different mechanisms. • N-Myc represses CCNG2 transcription by directly interacting with Sp1 bound in CCNG2 promoter and recruiting HDAC2. Importantly, reactivation of CCNG2 expression through epigenetic drugs partially reduces N-Myc and HDAC2 mediated cell proliferation. • N-Myc/Max complex represses CLU expression by direct binding to a peculiar E-box element on CLU promoter and by recruitment of HDACs and Polycomb Complexes, to the CLU promoter. Overall our findings strongly support the model in which Myc overexpression/amplification may contribute to some aspects of oncogenesis by a dual action: i) transcription activation of genes that confer a multidrug resistant phenotype to cancer cells; ii), transcription repression of genes involved in cell cycle inhibition and cellular differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor, characterized in 90% of cases by the presence of internal tandem duplications (ITDs) localized at the last exon of BCOR gene. BCOR protein constitute a core component of the non-canonical Polycomb Repressive Complex1 (PRC1.1), which performs a fundamental silencing activity. ITDs in the last BCOR exon at the level of PUFD domain have been identified in many tumor subtypes and could affect PCGF1 binding and the subsequent PRC1.1 activity, although the exact oncogenic mechanism of ITD remains poorly understood. This project has the objective of investigating the molecular mechanisms underlying the oncogenesis of CCSK, approaching the study with different methodologies. A first model in HEK-293 allowed to obtain important informations about BCOR functionality, suggesting that the presence of ITD generates an altered activity which is very different from a loss-of-function. It has also been observed that BCOR function within the PRC1.1 complex varies with different ITDs. Moreover, it allowed the identification of molecular signatures evoked by the presence of BCOR-ITD, including its role in extracellular matrix interactions and invasiveness promotion. The parallel analysis of WTS data from 8 CCSK cases permitted the identification of a peculiar signature for metastatic CCSKs, highlighting a 20-fold overexpression of FGF3. This factor promoted a significant increase in invasive ability in the cellular model. In order to study BCOR-ITD effects over cell stemness and differentiation, an inducible model is being obtained in H1 cells. This way, it will be possible to study the functionality of BCOR-ITD in a context more similar to the origin of CCSKs, evaluating both the specific interactome and phenotypic consequences caused by the mutation.