3 resultados para Functionalized polypyrrole
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The main scope of this Ph.D. thesis has concerned the possible transformations of bridging ligands in diiron complexes, in order to explore unconventional routes to the synthesis of new functionalized multisite bound organic frames. The results achieved during the Ph.D. can be summarized in the following points: 1) We have extended the assembling between small unsaturated molecules and bridging carbyne ligands in diiron complexes to other species. In particular, we have investigated the coupling between olefins and thiocarbyne, leading to the synthesis of thioallylidene bridging diiron complexes. Then, we have extended the study to the coupling between olefins and aminocarbyne. This result shows that the coupling between activated olefins and heteroatom substituted bridging carbynes has a general character. 2) As we have shown, the coupling of bridging alkylidyne ligands with alkynes and alkenes provides excellent routes to the synthesis of bridging C3 hydrocarbyl ligands. As a possible extension of these results we have examined the synthesis of C4 bridging frames through the combination of bridging alkylidynes with allenes. Also in this case the reaction has a general character. 3) Diiron complexes bearing bridging functionalized C3 organic frames display the presence of donor atoms, such as N and S, potentially able to coordinate unsaturated metal fragments. Thus, we have studied the possibility for these systems to act as ‘organometallic ligands’, in particular towards Pd and Rh. 4) The possibility of releasing the organic frame from the bridging coordination appears particularly appealing in the direction of a metal-assisted organic synthesis. Within this field, we have investigated the possibility of involving the C3 bridging ligand in cycloaddition reactions with alkynes, with the aim of generating variously functionalized five-membered cycles. The [3+2] cyclization does not lead to the complete release of the organic fragment but rather it produces its transformation into a cyclopentadienyl ring, which remains coordinated to one Fe atom. This result introduces a new approach to the formation of polyfunctionalised ferrocenes. 5) Furthermore, I have spent a research period of about six months at the Department of Inorganic Chemistry of the Barcelona University, under the supervision of Prof. Concepción López, with the aim of studying the chemistry of polydentate ferrocenyl ligands and their use in organometallic synthesis.
Resumo:
The synthesis of luminescent metal complexes is a very challenging task since they can be regarded as the starting point for a lot of different areas. Luminescent complexes, in fact, can be used for technological, industrial, medical and biological applications. During my PhD I worked with different metals having distinguishing intrinsic properties that make them different from each other and, in particular, more or less suitable for the different possible uses. Iridium complexes show the best photophysical properties: they have high quantum yields, very long lifetimes and possess easily tunable emissions throughout the visible range. On the other hand, Iridium is very expensive and scarcely available. The aim of my work concerning this metal was, therefore, to synthesize ligands able not only to form luminescent complexes, but also able to add functionalities to the final complex, increasing its properties, and therefore its possible practical uses. Since Re(I) derivatives have been reported to be suitable as probes in biological system, and the use of Re(I) reduces the costs, the synthesized bifunctional ligands containing a pyridine-triazole and a biotin unit were employed to obtain new Re(I) luminescent probes. Part of my work involved the design and synthesis of new ligands able to form stable complexes with Eu(III) and Ce(III) salts, in order to obtain an emission in the range of visible light: these two metals are quite cheap and relatively non-toxic compared to other heavy metals. Finally, I plan to synthesize organic derivatives that already possessed an emission thanks to the presence of other many chromophoric groups and can be able to link the Zinc (II), a low cost and especially non-toxic “green” metal. Zinc has not its own emission, but when it sticks to ligands, it increases their photophysical properties.
Resumo:
The thesis is focused on the development of a method for the synthesis of silicon nanocrystals with different sizes, narrow size distribution, good optical properties and stability in air. The resulting silicon nanocrystals have been covalently functionalized with different chromophores with the aim to exploit the new electronic and chemical properties that emerge from the interaction between silicon nanocrystal surface and ligands. The purpose is to use these chromophores as light harvesting antennae, increasing the optical absorption of silicon nanocrystals. Functionalized silicon nanocrystals have been characterized with different analytical techniques leading to a good knowledge of optical properties of semiconductor quantum dots.