6 resultados para Functional validation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hereditary optic neuropathies (HON) are a genetic cause of visual impairment characterized by degeneration of retinal ganglion cells. The majority of HON are caused by pathogenic variants in mtDNA genes and in gene OPA1. However, several other genes can cause optic atrophy and can only be identified by high throughput genetic analysis. Whole Exome Sequencing (WES) is becoming the primary choice in rare disease molecular diagnosis, being both cost effective and informative. We performed WES on a cohort of 106 cases, of which 74 isolated ON patients (ON) and 32 syndromic ON patients (sON). The total diagnostic yield amounts to 27%, slightly higher for syndromic ON (31%) than for isolated ON (26%). The majority of genes found are related to mitochondrial function and already reported for harbouring HON pathogenic variants: ACO2, AFG3L2, C19orf12, DNAJC30, FDXR, MECR, MTFMT, NDUFAF2, NDUFB11, NDUFV2, OPA1, PDSS1, SDHA, SSBP1, and WFS1. Among these OPA1, ACO2, and WFS1 were confirmed as the most relevant genetic causes of ON. Moreover, several genes were identified, especially in sON patients, with direct impairment of non-mitochondrial molecular pathways: from autophagy and ubiquitin system (LYST, SNF8, WDR45, UCHL1), to neural cells development and function (KIF1A, GFAP, EPHB2, CACNA1A, CACNA1F), but also vitamin metabolism (SLC52A2, BTD), cilia structure (USH2A), and nuclear pore shuttling (NUTF2). Functional validation on yeast model was performed for pathogenic variants detected in MECR, MTFMT, SDHA, and UCHL1 genes. For SDHA and UCHL1 also muscle biopsy and fibroblast cell lines from patients were analysed, pointing to possible pathogenic mechanisms that will be investigated in further studies. In conclusion, WES proved to be an efficient tool when applied to our ON cohort, for both common disease-genes identification and novel genes discovery. It is therefore recommended to consider WES in ON molecular diagnostic pipeline, as for other rare genetic diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fabry disease (FD), X-linked metabolic disorder caused by a deficiency in α-galactosidase A activity, leads to the accumulation of glycosphingolipids, mainly Gb3 and lyso-Gb3, in several organs. Gastrointestinal (GI) symptoms are among the earliest and most common, strongly impacting patients’ quality of life. However, the origin of these symptoms and the exact mechanisms of pathogenesis are still poorly understood, thus the pressing need to improve their knowledge. Here we aimed to evaluate whether a FD murine model (α-galactosidase A Knock-Out) captures the functional GI issues experienced by patients. In particular, the potential mechanisms involved in the development and maintenance of GI symptoms were explored by looking at the microbiota-gut-brain axis involvement. Moreover, we sought to examine the effects of lyso-Gb3 on colonic contractility and the intestinal epithelium and the enteric nervous system, which together play important roles in regulating intestinal ion transport and fluid and electrolyte homeostasis. Fabry mice revealed visceral hypersensitivity and a diarrhea-like phenotype accompanied by anxious-like behavior and reduced locomotor activity. They reported also an imbalance of SCFAs and an early compositional and functional dysbiosis of the gut microbiota, which partly persisted with advancing age. Moreover, overexpression of TRPV1 was found in affected mice, and partial alteration of TRPV4 and TRPA1 as well, identifying them as possible therapeutic targets. The Ussing chamber results after treatment with lyso-Gb3 showed an increase in Isc (likely mediated by HCO3- ions movement) which affects neuron-mediated secretion, especially capsaicin- and partly veratridine-mediated. This first characterization of gut-brain axis dysfunction in FD mouse provides functional validation of the model, suggesting new targets and possible therapeutic approaches. Furthermore, lyso-Gb3 is confirmed to be not only a marker for the diagnosis and follow-up of FD but also a possible player in the alteration of the FD colonic ion transport process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycosyltransferases ST6GAL1 and B4GALNT2 (and their cognate antigens Sia6LacNAc and Sda, respectively) are associated with colorectal cancer (CRC) but it is not fully clear their biological and clinical significance. We explored the clinical relevance of both glycosyltransferases by interrogating The Cancer Genome Atlas (TCGA) database while the phenotypic/transcriptomic effects of ST6GAL1/B4GALNT2 overexpression were studied in genetically modified CRC cell lines. Transcriptomic data from CRC patients in TCGA database suggested a moderate impact of ST6GAL1 on CRC progression, although it was not possible to define a clear role for this glycosyltransferase. Transcriptomic analysis of ST6GAL1-transduced cell lines revealed a much deeper effect of ST6GAL1 on gene expression in SW948 than in SW48. The overexpression of ST6GAL1 induced opposite effects on soft agar growth and wound healing in both cell lines. These results indicate that the impact of a cancer-associated glycosyltransferase change on phenotype/transcriptome can be extremely variable, depending on the molecular context of the tumor cell. On the contrary, transcriptomic analysis of B4GALNT2-modified cell lines together with TCGA database survey demonstrated a strong impact of B4GALNT2 on the transcriptional activity of CRC cells, in particular its association with a better prognosis. We suggest an anti-tumoral role of B4GALNT2 in CRC. We also investigated the glycan changes related to ST6GAL1/B4GALNT2 expression in a small cohort of tissues/plasma as well as the N-glycomic profile of CRC, normal and polyp tissues. We found an increase of ST6GAL1 activity in CRC and inflammatory bowel disease plasma samples comparing with plasma from healthy donors. A different Sda protein carrier pattern was observed between healthy donors and CRC plasma samples. β-arrestin 1 is a possible candidate as Sda carrier protein in plasma samples although future validation studies are needed. The alterations found in the N-glycan pattern highlight the importance of N-glycome as a molecular signature in cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects of the peripheral nervous system are extremely frequent in trauma and surgeries and have high socioeconomic costs. In case of peripheral nerve injury, the first approach is primary neurorrhaphy, which is direct nerve repair with epineural microsutures of the two stumps. However, this is not feasible in case of stump retraction or in case of tissue loss (gap > 2 cm), where the main surgical options are autologous grafts, allogenic grafts, or nerve conduits. While the gold standard is the autograft, it has disadvantages related to its harvesting, with an inevitable donor site morbidity and functional deficit. Fresh nerve allografts have therefore become a viable alternative option, but they require immunosuppression, which is often contraindicated. Acellular Nerve Allografts (ANA) represent a valid alternative, they do not need immunosuppression and appear to be safe and effective based on recent studies. The purpose of this study is to propose and develop an innovative method of nerve decellularization (Rizzoli method), conforming to cleanroom requirements in order to perform the direct tissue manipulation step and the nerve decellularization process within five hours, so as to accelerate the detachment of myelin and cellular debris, without detrimental effects on nerve architecture. In this study, the safety and the efficacy of the new method are evaluated in vitro and in vivo by histological, immunohistochemical, and histomorphometric studies in rabbits and humans. The new method is rapid, safe, and cheaper if compared with available commercial ANAs. The present study shows that the method, previously optimized in vitro and in vivo on animal model presented by our group, can be applied on human nerve samples. This work represents the first step in providing a novel, safe, and inexpensive tool for use by European tissue banks to democratize the use of nerve tissue transplantation for nerve injury reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The treatment of metastatic castration-resistant prostate cancer (mCRPC) is currently characterized by several drugs with different mechanisms of action, such as new generation hormonal agents (abiraterone, enzalutamide), chemotherapy (docetaxel, cabazitaxel), PARP inhibitors (olaparib) and radiometabolic therapies (radium-223, LuPSMA). There is an urgent need to identify biomarkers to guide personalized therapy in mCRPC. In recent years, the status of androgen receptor (AR) gene detected in liquid biopsy has been associated with outcomes in patients treated with abiraterone or enzalutamide. More recently, plasma tumor DNA (ptDNA) and its changes during treatment have been identified as early indicators of response to anticancer treatments. Recent works also suggested a potential role of tumor-related metabolic parameters of 18Fluoro-Choline Positron Emission Tomography (F18CH-PET)-computed tomography (CT) as a prognostic tool in mCRCP. Other clinical features, such as the presence of visceral metastases, have been correlated with outcome in mCRPC patients. Recent studies conducted by our research group have designed and validated a prognostic model based on the combination of molecular characteristics (ptDNA levels), metabolic features found in basal FCH PET scans (metabolic tumor volume values, MTV), clinical parameters (absence or presence of visceral metastases), and laboratory tests (serum lactate dehydrogenase levels, LDH). Within this PhD project, 30 patients affected by mCRPC, pre-treated with abiraterone or enzalutamide, candidate for taxane-based treatments (docetaxel or cabazitaxel), have been prospectively evaluated. The prognostic model previously described was applied to this population, to interrogate its prognostic power in a more advanced cohort of patients, resulting in a further external validation of the tool.