12 resultados para Frontal-parietal Axis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The natural history of Myotonic Dystrophy type 1 is largely unclear, longitudinal studies are lacking. Objectives: to collect clinical and laboratory data, to evaluate sleep disorders, somatic and autonomic skin fibres, neuropsychological and neuroradiological aspects in DM1 patients. Methods: 72 DM1 patients underwent a standardized clinical and neuroradiological evaluation performed by a multidisciplinary team during 3 years of follow-up. Results: longer disease duration was associated with higher incidence of conduction disorders and lower ejection fraction; higher CVF values were predictors for a reduced risk of cardiopathy. Lower functional pulmonary values were associated with class of expansion and were negatively associated with disease duration; arterial blood gas parameters were not associated with expansion size, disease duration nor with respiratory function test. Excessive daytime sleepiness was not associated with class of expansion nor with any of the clinical parameters examined. We detected apnoea in a large percentage of patients, without differences between the 3 genetic classes; higher CVF values were predictors for a reduced risk of apnoea. Skin biopsies demonstrated the presence of a subclinical small fibre neuropathy with involvement of the somatic fibres. The pupillometry study showed lower pupil size at baseline and a lower constriction response to light. The most affected neuropsychological domains were executive functions, visuoconstructional, attention and visuospatial tasks, with a worse performance of E1 patients in the visuoperceptual ability and social cognition tasks. MRI study demonstrated a decrease in the volumes of frontal, parietal, temporal, occipital cortices, accumbens, putamen nuclei and a more severe volume reduction of the isthmus cingulate, transverse temporal, superior parietal and temporal gyri in E2 patients. Discussion: only some clinical parameters could predict the risk of cardiopathy, pulmonary syndrome and sleep disorders, while other clinical aspects proved to be unpredictable, confirming the importance of periodic clinical follow-up of these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic kidney disease (CKD) is one of the strongest risk factor for myocardial infarction (MI) and mortality. The aim of this study was to assess the association between renal dysfunction severity, short-term outcomes and the use of in-hospital evidence-based therapies among patients with non–ST-segment elevation myocardial infarction (NSTEMI). Methods: We examined data on 320 patients presenting with NSTEMI to Maggiore’s Emergency Department from 1st Jan 2010 to 31st December 2011. The study patients were classified into two groups according to their baseline glomerular filtration rate (GFR): renal dysfunction (RD) (GFR<60) and non-RD (GFR≥60 ml/min). Patients were then classified into four groups according to their CKD stage (GFR≥60, GFR 59-30, GFR 29-15, GFR <15). Results: Of the 320 patients, 155 (48,4%) had a GFR<60 ml/min at baseline. Compared with patients with a GFR≥60 ml/min, this group was, more likely to be female, to have hypertension, a previous myocardial infarction, stroke or TIA, had higher levels of uric acid and C-reactive protein. They were less likely to receive immediate (first 24 hours) evidence-based therapies. The GFR of RD patients treated appropriately increases on average by 5.5 ml/min/1.73 m2. The length of stay (mean, SD) increased with increasing CKD stage, respectively 5,3 (4,1), 7.0 (6.1), 7.8 (7.0), 9.2 (5.8) (global p <.0001). Females had on average a longer hospitalization than males, regardless of RD. In hospital mortality was higher in RD group (3,25%). Conclusions: The in-hospital mortality not was statically difference among the patients with a GFR value ≥60 ml/min, and patients with a GFR value <60 ml/min. The length of stay increased with increasing CKD stages. Despite patients with RD have more comorbidities then without RD less frequently receive guideline –recommended therapy. The GFR of RD patients treated appropriately improves during hospitalization, but not a level as we expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hair cortisol is a novel marker to measure long-term secretion cortisol free from many methodological caveats associated with other matrices such as plasma, saliva, urine, milk and faeces. For decades hair analysis has been successfully used in forensic science and toxicology to evaluate the exposure to exogenous substances and assess endogenous steroid hormones. Evaluation of cortisol in hair matrix began about a decade ago and have over the past five years had a remarkable development by advancing knowledge and affirming this method as a new and efficient way to study the hypothalamic-pituitary-adrenal (HPA) axis activity over a long time period. In farm animals, certain environmental or management conditions can potentially activate the HPA axis. Given the importance of cortisol in monitoring the HPA axis activity, a first approach has involved the study on the distribution of hair cortisol concentrations (HCC) in healthy dairy cows showing a physiological range of variation of this hormone. Moreover, HCC have been significantly influenced also by changes in environmental conditions and a significant positive correlation was detected between HCC and cows clinically or physiologically compromised suggesting that these cows were subjected to repeated HPA axis activation. Additionally, Crossbreed F1 heifers showed significantly lower HCC compared to pure animals and a breed influence has been seen also on the HPA axis activity stimulated by an environmental change showing thus a higher level of resilience and a better adaptability to the environment of certain genotypes. Hair proved to be an excellent matrix also in the study of the activation of the HPA axis during the perinatal period. The use of hair analysis in research holds great promise to significantly enhance current understanding on the role of HPA axis over a long period of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nocturnal Frontal Lobe Epilepsy (NFLE) is characterized by onset during infancy or childhood with persistence in adulthood, family history of similar nocturnal episodes simulating non-REM parasomnias (sleep terrors or sleepwalking), general absence of morphological substrates, often by normal interictal electroencephalographical recordings (EEGs) during wakefulness. A family history of epilepsy may be present with Mendelian autosomal dominant inheritance has been described in some families. Recent studies indicate the involvement of neuronal nicotinic acetylcholine receptors (nAChRs) in the molecular mechanisms of NFLE. Mutations in the genes encoding for the α4 (CHRNA4) and ß2 (CHRNB2) subunits of the nAChR induce changes in the biophysical properties of nAChR, resulting generally in a “gain of function”. Preclinical studies report that activation of a nuclear receptor called type peroxisome proliferator-activated receptor (PPAR-α) by endogenous molecules or by medications (e.g. fenofibrate) reduces the activity of the nAChR and, therefore, may decrease the frequency of seizures. Thus, we hypothesize that negative modulation of nAChRs might represent a therapeutic strategy to be explored for pharmacological treatment of this form of epilepsy, which only partially responds to conventional antiepileptic drugs. In fact, carbamazepine, the current medication for NFLE, abolishes the seizures only in one third of the patients. The aim of the project is: 1)_to verify the clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant NFLE and ADNFLE patients; focousing on the analysis of the polysomnographic action of the PPAR- agonist (fenofibrate). 2)_to demonstrate the subtended mechanism of efficacy by means of electrophysiological and behavioral experiments in an animal model of the disease: particularly, transgenic mice carrying the mutation in the nAChR 4 subunit (Chrna4S252F) homologous to that found in the humans. Given that a PPAR-α agonist, FENOFIBRATE, already clinically utilized for lipid metabolism disorders, provides a promising therapeutic avenue in the treatment of NFLE\ADNFLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posterior parietal cortex (PPC) of primates represents a remarkable platform that has evolved over time to solve some of the computational challenges that we face in the everyday life, such as sensorimotor integration, spatial attention, and motor planning. With the aim of further investigating the multifaceted functional characteristics of medial PPC, we conducted three studies to explore the visuomotor, somatic, visual, and attention-related properties of two PPC areas: V6A, a visuomotor area part of the dorsomedial visual stream, and PE, an area strongly dominated by somatomotor input, residing mainly on the exposed surface of the superior parietal lobule. In the first study, we tested the impact of visual feedback on V6A grasp-related activity during arm movements towards objects of different shapes. Our results demonstrate that V6A is modulated by both grip type and visual information during grasping preparation and execution, with a predominance of cells influenced by grip type. In the second study, we explored the influence of depth and direction information on reach-related activity of neurons in the so far largely neglected medial part of area PE. We observed a remarkable trend in medial PPC, going from the joint coding of depth and direction signals caudally, in area V6A, to a largely segregated processing of the two signals rostrally, in area PE. In the third study, we used a combined fMRI-electrophysiology experiment to investigate the neuronal mechanisms underlying covert shift of attention processes in area V6A. Our preliminary results reveal that half of the cells showed shift-selective activity when the monkey covertly shifted its attention towards the receptive field. All together these findings highlight the role of the medial PPC in integrating information coming from different sources (vision, somatosensory and motor) and emphasize the involvement of action-related regions of the dorsomedial visual stream in higher level cognitive functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first subdivisions of the brain into macro regions, it has always been thought a priori that, given the heterogeneity of neurons, different areas host specific functions and process unique information in order to generate a behaviour. Moreover, the various sensory inputs coming from different sources (eye, skin, proprioception) flow from one macro area to another, being constantly computed and updated. Therefore, especially for non-contiguous cortical areas, it is not expected to find the same information. From this point of view, it would be inconceivable that the motor and the parietal cortices, diversified by the information encoded and by the anatomical position in the brain, could show very similar neural dynamics. With the present thesis, by analyzing the population activity of parietal areas V6A and PEc with machine learning methods, we argue that a simplified view of the brain organization do not reflect the actual neural processes. We reliably detected a number of neural states that were tightly linked to distinct periods of the task sequence, i.e. the planning and execution of movement and the holding of target as already observed in motor cortices. The states before and after the movement could be further segmented into two states related to different stages of movement planning and arm posture processing. Rather unexpectedly, we found that activity during the movement could be parsed into two states of equal duration temporally linked to the acceleration and deceleration phases of the arm. Our findings suggest that, at least during arm reaching in 3D space, the posterior parietal cortex (PPC) shows low-level population neural dynamics remarkably similar to those found in the motor cortices. In addition, the present findings suggest that computational processes in PPC could be better understood if studied using a dynamical system approach rather than studying a mosaic of single units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior parietal lobule (SPL) of macaques is classically described as an associative cortex implicated in visuospatial perception, planning and control of reaching and grasping movements (De Vitis et al., 2019; Galletti et al., 2003, 2018, 2022; Fattori et al., 2017; Hadjidimitrakis et al., 2015). These processes are the result of the integration of signals related to different sensory modalities. During a goal-directed action, eye and limb information are combined to ensure that the hand is transported at the gazed target location and the arm is maintained steady in the final position. The SPL areas V6A, PEc and PE contain cells sensitive to the direction of gaze and limb position but less is known about the degree of independent encoding of these signals. In this thesis, we evaluated the influence of eye and arm position information upon single neuron activity of areas V6A, PEc and PE during the holding period after the execution of arm reaching movement, when the gaze and hand are both still at the reach target. Two male macaques (Macaca fascicularis) performed a reaching task while single unit activity was recorded from areas V6A, PEc and PE. We found that neurons in all these areas were modulated by eye and static arm positions with a joint encoding of gaze and somatosensory signals in V6A and PEc and a mostly separate processing of the two signals in PE. The elaboration of this information reflects the functional gradient found in the SPL with the caudal sector characterized by visuo-somatic properties in comparison to the rostral sector dominated by somatosensory signals. This evidence well agree also with the recent reallocation of areas V6A and PEc in Brodmann’s area 7 depending on their similar structural and functional features with respect to PE belonging to Brodmann’s area 5 (Gamberini et al., 2020).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabry disease (FD), X-linked metabolic disorder caused by a deficiency in α-galactosidase A activity, leads to the accumulation of glycosphingolipids, mainly Gb3 and lyso-Gb3, in several organs. Gastrointestinal (GI) symptoms are among the earliest and most common, strongly impacting patients’ quality of life. However, the origin of these symptoms and the exact mechanisms of pathogenesis are still poorly understood, thus the pressing need to improve their knowledge. Here we aimed to evaluate whether a FD murine model (α-galactosidase A Knock-Out) captures the functional GI issues experienced by patients. In particular, the potential mechanisms involved in the development and maintenance of GI symptoms were explored by looking at the microbiota-gut-brain axis involvement. Moreover, we sought to examine the effects of lyso-Gb3 on colonic contractility and the intestinal epithelium and the enteric nervous system, which together play important roles in regulating intestinal ion transport and fluid and electrolyte homeostasis. Fabry mice revealed visceral hypersensitivity and a diarrhea-like phenotype accompanied by anxious-like behavior and reduced locomotor activity. They reported also an imbalance of SCFAs and an early compositional and functional dysbiosis of the gut microbiota, which partly persisted with advancing age. Moreover, overexpression of TRPV1 was found in affected mice, and partial alteration of TRPV4 and TRPA1 as well, identifying them as possible therapeutic targets. The Ussing chamber results after treatment with lyso-Gb3 showed an increase in Isc (likely mediated by HCO3- ions movement) which affects neuron-mediated secretion, especially capsaicin- and partly veratridine-mediated. This first characterization of gut-brain axis dysfunction in FD mouse provides functional validation of the model, suggesting new targets and possible therapeutic approaches. Furthermore, lyso-Gb3 is confirmed to be not only a marker for the diagnosis and follow-up of FD but also a possible player in the alteration of the FD colonic ion transport process.