2 resultados para Friction and wear

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite porcelain enamels are inorganic coatings for metallic components based on a special ceramic-vitreous matrix in which specific additives are randomly dispersed. The ceramic-vitreous matrix is made by a mixture of various raw materials and elements and in particular it is based on boron-silicate glass added with metal oxides(1) of titanium, zinc, tin, zirconia, alumina, ecc. These additions are often used to improve and enhance some important performances such as corrosion(2) and wear resistance, mechanical strength, fracture toughness and also aesthetic functions. The coating process, called enamelling, depends on the nature of the surface, but also on the kind of the used porcelain enamel. For metal sheets coatings two industrial processes are actually used: one based on a wet porcelain enamel and another based on a dry-silicone porcelain enamel. During the firing process, that is performed at about 870°C in the case of a steel substrate, the enamel raw material melts and interacts with the metal substrate so enabling the formation of a continuous varying structure. The interface domain between the substrate and the external layer is made of a complex material system where the ceramic vitreous and the metal constituents are mixed. In particular four main regions can be identified, (i) the pure metal region, (ii) the region where the metal constituents are dominant compared with the ceramic vitreous components, (iii) the region where the ceramic vitreous constituents are dominant compared with the metal ones, and the fourth region (iv) composed by the pure ceramic vitreous material. It has also to be noticed the presence of metallic dendrites that hinder the substrate and the external layer passing through the interphase region. Each region of the final composite structure plays a specific role: the metal substrate has mainly the structural function, the interphase region and the embedded dendrites guarantee the adhesion of the external vitreous layer to the substrate and the external vitreous layer is characterized by an high tribological, corrosion and thermal shock resistance. Such material, due to its internal composition, functionalization and architecture can be considered as a functionally graded composite material. The knowledge of the mechanical, tribological and chemical behavior of such composites is not well established and the research is still in progress. In particular the mechanical performances data about the composite coating are not jet established. In the present work the Residual Stresses, the Young modulus and the First Crack Failure of the composite porcelain enamel coating are studied. Due to the differences of the porcelain composite enamel and steel thermal properties the enamelled steel sheets have residual stresses: compressive residual stress acts on the coating and tensile residual stress acts on the steel sheet. The residual stresses estimation has been performed by measuring the curvature of rectangular one-side coated specimens. The Young modulus and the First Crack Failure (FCF) of the coating have been estimated by four point bending tests (3-7) monitored by means of the Acoustic Emission (AE) technique(5,6). In particular the AE information has been used to identify, during the bending tests, the displacement domain over which no coating failure occurs (Free Failure Zone, FFZ). In the FFZ domain, the Young modulus has been estimated according to ASTM D6272-02. The FCF has been calculated as the ratio between the displacement at the first crack of the coating and the coating thickness on the cracked side. The mechanical performances of the tested coated specimens have also been related and discussed to respective microstructure and surface characteristics by double entry charts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Next generation electronic devices have to guarantee high performance while being less power-consuming and highly reliable for several application domains ranging from the entertainment to the business. In this context, multicore platforms have proven the most efficient design choice but new challenges have to be faced. The ever-increasing miniaturization of the components produces unexpected variations on technological parameters and wear-out characterized by soft and hard errors. Even though hardware techniques, which lend themselves to be applied at design time, have been studied with the objective to mitigate these effects, they are not sufficient; thus software adaptive techniques are necessary. In this thesis we focus on multicore task allocation strategies to minimize the energy consumption while meeting performance constraints. We firstly devise a technique based on an Integer Linear Problem formulation which provides the optimal solution but cannot be applied on-line since the algorithm it needs is time-demanding; then we propose a sub-optimal technique based on two steps which can be applied on-line. We demonstrate the effectiveness of the latter solution through an exhaustive comparison against the optimal solution, state-of-the-art policies, and variability-agnostic task allocations by running multimedia applications on the virtual prototype of a next generation industrial multicore platform. We also face the problem of the performance and lifetime degradation. We firstly focus on embedded multicore platforms and propose an idleness distribution policy that increases core expected lifetimes by duty cycling their activity; then, we investigate the use of micro thermoelectrical coolers in general-purpose multicore processors to control the temperature of the cores at runtime with the objective of meeting lifetime constraints without performance loss.