5 resultados para Frame-timing

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il lavoro si propone un’analisi dell’elemento spaziale e del movimento per ricostruire lo spazio della cultura neozelandese e lo spazio letterario di Janet Frame. La tesi si concentra in particolar modo sui romanzi con alcune incursioni nella fiction breve e nell’autobiografia. Si sviluppa in quattro capitoli nella forma di un itinerario attraverso la fiction dell'autrice preceduto da un capitolo che offre alcune coordinate teoriche e metodologiche sul concetto di spazio e la sua percezione. In particolare, una prospettiva fenomenologica e esistenziale alla questione appare congeniale all'analisi delle opere dell'autrice. Nell'ordine, quattro spazi concettuali si aprono a partire dai romanzi: linguaggio, etica, trascendenza e arte. Essi costituiscono i nuclei tematici e strutturali attorno ai quali si raccolgono i romanzi di Janet Frame e che consentono di analizzare i luoghi descritti nelle opere proponendo però una riflessione che va oltre la rappresentazione dello spazio per aprirsi sul retroterra culturale, intellettuale e filosofico dell'autrice. Emerge così l'originalità della sua posizione rispetto all'identità culturale del suo paese e alla relazioni che legano la Nuova Zelanda alla metropoli inglese e agli altri Paesi anglosassoni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents and discusses TEDA, an algorithm for the automatic detection in real-time of tsunamis and large amplitude waves on sea level records. TEDA has been developed in the frame of the Tsunami Research Team of the University of Bologna for coastal tide gauges and it has been calibrated and tested for the tide gauge station of Adak Island, in Alaska. A preliminary study to apply TEDA to offshore buoys in the Pacific Ocean is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timing of waiting list entrance for patients with cystic fibrosis in need of pulmonary transplant: the experience of a regional referral centre Objective: Evaluation of parameters that can predict a rapid decay of general conditions of patients affected by Cystic Fibrosis (CF) with no specific criteria to be candidate to pulmonary transplant. Material and methods: Fifteen patients with CF who died for complications and 8 who underwent lung transplantation in the 2000-2010 decade, were enrolled. Clinical data 2 years before the event (body max index, FEV1%, number of EV antibiotic treatments per year, colonization with Methicillin-resistant Staphylococcus aureus (MRSA), pseudomonas aeruginosa mucosus, burkholderia cepacia, pulmonary allergic aspergilosis) were compared among the 2 groups. Results: Mean FEV1% was significantly higher and mean number of antibiotic treatment was lower in deceased than in the transplanted patients (p<0.002 and p<0.001 respectively). Although in patients who died there were no including criteria to enter the transplant list 2 years before the exitus, suggestive findings such as low BMI (17.3), high incidence of hepatic pathology (33.3%), diabetes (50%), and infections with MRSA infection (25%), Pseudomonas aeruginosa (83.3%) and burkholderia cepacia (8.3%) were found with no statistical difference with transplanted patients, suggesting those patients were at risk of severe prognosis. In patients who died, females were double than males. Conclusion: While evaluating patients with CF, negative prognostic factors such as the ones investigated in this study, should be considered to select individuals with high mortality risk who need stricter therapeutical approach and follow up. Inclusion of those patients in the transplant waiting list should be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deal with the design of advanced OFDM systems. Both waveform and receiver design have been treated. The main scope of the Thesis is to study, create, and propose, ideas and novel design solutions able to cope with the weaknesses and crucial aspects of modern OFDM systems. Starting from the the transmitter side, the problem represented by low resilience to non-linear distortion has been assessed. A novel technique that considerably reduces the Peak-to-Average Power Ratio (PAPR) yielding a quasi constant signal envelope in the time domain (PAPR close to 1 dB) has been proposed.The proposed technique, named Rotation Invariant Subcarrier Mapping (RISM),is a novel scheme for subcarriers data mapping,where the symbols belonging to the modulation alphabet are not anchored, but maintain some degrees of freedom. In other words, a bit tuple is not mapped on a single point, rather it is mapped onto a geometrical locus, which is totally or partially rotation invariant. The final positions of the transmitted complex symbols are chosen by an iterative optimization process in order to minimize the PAPR of the resulting OFDM symbol. Numerical results confirm that RISM makes OFDM usable even in severe non-linear channels. Another well known problem which has been tackled is the vulnerability to synchronization errors. Indeed in OFDM system an accurate recovery of carrier frequency and symbol timing is crucial for the proper demodulation of the received packets. In general, timing and frequency synchronization is performed in two separate phases called PRE-FFT and POST-FFT synchronization. Regarding the PRE-FFT phase, a novel joint symbol timing and carrier frequency synchronization algorithm has been presented. The proposed algorithm is characterized by a very low hardware complexity, and, at the same time, it guarantees very good performance in in both AWGN and multipath channels. Regarding the POST-FFT phase, a novel approach for both pilot structure and receiver design has been presented. In particular, a novel pilot pattern has been introduced in order to minimize the occurrence of overlaps between two pattern shifted replicas. This allows to replace conventional pilots with nulls in the frequency domain, introducing the so called Silent Pilots. As a result, the optimal receiver turns out to be very robust against severe Rayleigh fading multipath and characterized by low complexity. Performance of this approach has been analytically and numerically evaluated. Comparing the proposed approach with state of the art alternatives, in both AWGN and multipath fading channels, considerable performance improvements have been obtained. The crucial problem of channel estimation has been thoroughly investigated, with particular emphasis on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSSs). In this contest our contribution is twofold, from the theoretical side, we derived lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy,from the receiver design we proposed novel MSS selection strategies which have been shown to approach these MSE lower bounds, and outperformed the state-of-the-art alternatives. Finally, the possibility of using of Single Carrier Frequency Division Multiple Access (SC-FDMA) in the Broadband Satellite Return Channel has been assessed. Notably, SC-FDMA is able to improve the physical layer spectral efficiency with respect to single carrier systems, which have been used so far in the Return Channel Satellite (RCS) standards. However, it requires a strict synchronization and it is also sensitive to phase noise of local radio frequency oscillators. For this reason, an effective pilot tone arrangement within the SC-FDMA frame, and a novel Joint Multi-User (JMU) estimation method for the SC-FDMA, has been proposed. As shown by numerical results, the proposed scheme manages to satisfy strict synchronization requirements and to guarantee a proper demodulation of the received signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.