20 resultados para Fracture mode I parameters

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is the investigation of the Mode-I fracture mechanics parameters of quasi-brittle materials to shed light onto the influence of the width and size of the specimen on the fracture response of notched beams. To further the knowledge on the fracture process, 3D digital image correlation (DIC) was employed. A new method is proposed to determine experimentally the critical value of the crack opening, which is then used to determine the size of the fracture process zone (FPZ). In addition, the Mode-I fracture mechanics parameters are compared with the Mode-II interfacial properties of composites materials that feature as matrices the quasi-brittle materials studied in Mode-I conditions. To investigate the Mode II fracture parameters, single-lap direct shear tests are performed. Notched concrete beams with six cross-sections has been tested using a three-point bending (TPB) test set-up (Mode-I fracture mechanics). Two depths and three widths of the beam are considered. In addition to concrete beams, alkali-activated mortar beams (AAMs) that differ by the type and size of the aggregates have been tested using the same TPB set-up. Two dimensions of AAMs are considered. The load-deflection response obtained from DIC is compared with the load-deflection response obtained from the readings of two linear variable displacement transformers (LVDT). Load responses, peak loads, strain profiles along the ligament from DIC, fracture energy and failure modes of TPB tests are discussed. The Mode-II problem is investigated by testing steel reinforced grout (SRG) composites bonded to masonry and concrete elements under single-lap direct shear tests. Two types of anchorage systems are proposed for SRG reinforced masonry and concrete element to study their effectiveness. An indirect method is proposed to find the interfacial properties, compare them with the Mode-I fracture properties of the matrix and to model the effect of the anchorage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major weakness of composite materials is that low-velocity impact, introduced accidentally during manufacture, operation or maintenance of the aircraft, may result in delaminations between the plies. Therefore, the first part of this study is focused on mechanics of curved laminates under impact. For this aim, the effect of preloading on impact response of curved composite laminates is considered. By applying the preload, the stress through the thickness and curvature of the laminates increased. The results showed that all impact parameters are varied significantly. For understanding the contribution rate of preloading and pre-stress on the obtained results another test is designed. The interesting phenomenon is that the preloading can decrease the damaged area when the curvature of the both specimens is the same. Finally the effect of curvature type, concave and convex, is investigated under impact loading. In the second part, a new composition of nanofibrous mats are developed to improve the efficiency of curved laminates under impact loading. Therefore, at first some fracture tests are conducted to consider the effect of Nylon 6,6, PCL, and their mixture on mode I and mode II fracture toughness. For this goal, nanofibers are electrospun and interleaved between mid-plane of laminate composite to conduct mode I and mode II tests. The results shows that efficiency of Nylon 6,6 is better than PCL in mode II, while the effect of PCL on fracture toughness of mode I is more. By mixing these nanofibers the shortage of the individual nanofibers is compensated and so the Nylon 6,6/PCL nanofibers could increased mode I and II fracture toughness. Then all these nanofibers are used between all layers of composite layers to investigate their effect on damaged area. The results showed that PCL could decrease the damaged area about 25% and Nylon 6,6 and mixed nanofibers about 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite laminates present important advantages compared to conventional monolithic materials, mainly because for equal stiffness and strength they have a weight up to four times lower. However, due to their ply-by-ply nature, they are susceptible to delamination, whose propagation can bring the structure to a rapid catastrophic failure. In this thesis, in order to increase the service life of composite materials, two different approaches were explored: increase the intrinsic resistance of the material or confer to them the capability of self-repair. The delamination has been hindered through interleaving the composite laminates with polymeric nanofibers, which completed the hierarchical reinforcement scale of the composite. The manufacturing process for the integration of the nanofibrous mat in the laminate was optimized, resulting in an enhancement of mode I fracture toughness up to 250%. The effect of the geometrical dimensions of the nano-reinforcement on the architecture of the micro one (UD and woven laminates) was studied on mode I and II. Moreover, different polymeric materials were employed as nanofibrous reinforcement (Nylon 66 and polyvinylidene fluoride). The nano toughening mechanism was studied by micrograph analysis of the crack path and SEM analysis of the fracture surface. The fatigue behavior to the onset of the delamination and the crack growth rate for woven laminates interleaved with Nylon 66 nanofibers was investigated. Furthermore, the impact behavior of GLARE aluminum-glass epoxy laminates, toughened with Nylon 66 nanofibers was investigated. Finally, the possibility of confer to the composite material the capability of self-repair was explored. An extrinsic self-healing-system, based on core-shell nanofibers filled with a two-component epoxy system, was developed by co-electrospinning technique. The healing potential of the nano vascular system has been proved by microscope electron observation of the healing agent release as result of the vessels rupture and the crosslinking reaction was verified by thermal analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activities described in this thesis were focused on two main topics: the study of shaft-hub joint performance, with particular regard to interference-fitted and adhesively bonded connection, and the fatigue characterization of additively processed metal alloys. The research on interference-fitted shaft-hub joints dealt with some studies in the field of fretting fatigue. Rotating bending fatigue tests were performed on different materials by not conventional specimens to determine the fatigue properties of interference-fitted joints and to investigate the fretting fatigue phenomenon, which led to novel and original results. In adhesively bonded and interference-fitted shaft-hub connections (called hybrid joints) the synergic effect of anaerobic adhesive and interference has the capability of improving the joint strength. However, the adhesive contribution depends on several factors. Therefore, its behavior was investigated for different coupling pressure, coupling procedure, operating temperature and joint design. The study on additively manufactured metal alloy deals with rotating banding fatigue tests. AlSi10Mg and Maraging Stainless Steel CX were involved in the campaign for their wide applicability in Automotive. Build direction, heat and surface treatments were considered as input parameters. Fatigue results were interpreted by statistical method and microscopy analyses in order to determine the effectiveness and the beneficial or detrimental effects of the considered factors. Fracture mode and microstructure were investigated by fractographic and micrographic analyses

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questo lavoro di tesi è stato suddiviso in tre parti. L’argomento principale è stato lo “Studio della componente antiossidante di oli ottenuti da olive mediante l’utilizzo di diversi sistemi e parametri tecnologici”. E’ ben noto come la qualità ossidativa di un olio di oliva dipenda oltre che dalla sua composizione in acidi grassi, dalla presenza di composti caratterizzati da un elevata attività antiossidante, ovvero le sostanze fenoliche. I composti fenolici contribuiscono quindi in maniera preponderante alla shelf life dell’olio extravergine di oliva. Inoltre sono state riscontrate delle forti correlazione tra alcune di queste sostanze e gli attributi sensoriali positivi di amaro e piccante. E’ poi da sottolineare come il potere antiossidante dei composti fenolici degli oli vergini di oliva, sia stato negli ultimi anni oggetto di considerevole interesse, poiché correlato alla protezione da alcune patologie come ad esempio quelle vascolari, degenerative e tumorali. Il contenuto delle sostanze fenoliche negli oli di oliva dipende da diversi fattori: cultivar, metodo di coltivazione, grado di maturazione delle olive e ovviamente dalle operazioni tecnologiche poiché possono variare il quantitativo di questi composti estratto. Alla luce di quanto appena detto abbiamo valutato l’influenza dei fattori agronomici (metodi di agricoltura biologica, integrata e convenzionale) e tecnologici (riduzione della temperatura della materia prima, aggiunta di coadiuvanti in fase di frangitura e di gramolatura, confronto tra tre oli extravergini di oliva ottenuti mediante diversi sistemi tecnologici) sul contenuto in composti fenolici di oli edibili ottenuti da olive (paper 1-3-4). Oltre alle sostanze fenoliche, negli oli di oliva sono presenti altri composti caratterizzati da proprietà chimiche e nutrizionali, tra questi vi sono i fitosteroli, ovvero gli steroli tipici del mondo vegetale, che rappresentano la frazione dell’insaponificabile quantitativamente più importante dopo gli idrocarburi. La composizione quali-quantitativa degli steroli di un olio di oliva è una delle caratteristiche analitiche più importanti nella valutazione della sua genuinità; infatti la frazione sterolica è significativamente diversa in funzione dell’origine botanica e perciò viene utilizzata per distinguere tra di loro gli oli e le loro miscele. Il principale sterolo nell’olio di oliva è il β- sitosterolo, la presenza di questo composto in quantiinferiore al 90% è un indice approssimativo dell’aggiunta di un qualsiasi altro olio. Il β-sitosterolo è una sostanza importante dal punto di vista della salute, poiché si oppone all’assorbimento del colesterolo. Mentre in letteratura si trovano numerosi lavori relativi al potere antiossidante di una serie di composti presenti nell’olio vergine di oliva (i già citati polifenoli, ma anche carotenoidi e tocoferoli) e ricerche che dimostrano invece come altri composti possano promuovere l’ossidazione dei lipidi, per quanto riguarda il potere antiossidante degli steroli e dei 4- metilsteroli, vi sono ancora poche informazioni. Per questo è stata da noi valutata la composizione sterolica in oli extravergini di oliva ottenuti con diverse tecnologie di estrazione e l’influenza di questa sostanza sulla loro stabilità ossidativa (paper 2). E’ stato recentemente riportato in letteratura come lipidi cellulari evidenziati attraverso la spettroscopia di risonanza nucleare magnetica (NMR) rivestano una importanza strategica da un punto di vista funzionale e metabolico. Questi lipidi, da un lato un lato sono stati associati allo sviluppo di cellule neoplastiche maligne e alla morte cellulare, dall’altro sono risultati anche messaggeri di processi benigni quali l’attivazione e la proliferazione di un normale processo di crescita cellulare. Nell’ambito di questa ricerca è nata una collaborazione tra il Dipartimento di Biochimica “G. Moruzzi” ed il Dipartimento di Scienze degli Alimenti dell’Università di Bologna. Infatti, il gruppo di lipochimica del Dipartimento di Scienze degli Alimenti, a cui fa capo il Prof. Giovanni Lercker, da sempre si occupa dello studio delle frazioni lipidiche, mediante le principali tecniche cromatografiche. L’obiettivo di questa collaborazione è stato quello di caratterizzare la componente lipidica totale estratta dai tessuti renali umani sani e neoplastici, mediante l’utilizzo combinato di diverse tecniche analitiche: la risonanza magnetica nucleare (1H e 13C RMN), la cromatografia su strato sottile (TLC), la cromatografia liquida ad alta prestazione (HPLC) e la gas cromatografia (GC) (paper 5-6-7)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background New potential hazards in the use of ultrasound (US) are implied in new diagnostic applications of US, such as contrast enhanced US. Aim To assess the level of awareness and knowledge on safety issues of clinical use of US among physicians who are members of the Italian National Society for Ultrasound (SIUMB) Materials and methods A questionnaire including 11 multiple choice quiz was sent by e-mail to members of SIUMB, who preliminarly agreed to participate in this initiative. The answers were received anonimously and statistically analyzed. Results The number of returned valid questionnaires was 97 (8 were considered not valid for less than 10 answers filled). Mean age of the responders was 44 years old, and the average time the physician has been performing ultrasound examinations was 13 years. The principal workplace (70%) was a public Hospital. Physicians seemed to know the general definitions of principal safety-parameters, but few of them knew the definition of specific indexes. There was a general knowledge about the safe use of ultrasound in obstetrics, but there was a poor knowledge of biological effects of US: only about 37% answered correctly to questions about damage of vasculature of lung by high Mechanical Index US investigation and about the increase of temperature under the probe, according to the thermal indexes. Conclusion In conclusion the present findings indicate that greater efforts of National Ultrasound Societies are warranted in disseminating knowledge about the bio-effects of diagnostic ultrasound modalities among their members to prevent possible hazards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of mitochondrial dysfunction in cancer has long been a subject of great interest. In this study, such dysfunction has been examined with regards to thyroid oncocytoma, a rare form of cancer, accounting for less than 5% of all thyroid cancers. A peculiar characteristic of thyroid oncocytic cells is the presence of an abnormally large number of mitochondria in the cytoplasm. Such mitochondrial hyperplasia has also been observed in cells derived from patients suffering from mitochondrial encephalomyopathies, where mutations in the mitochondrial DNA(mtDNA) encoding the respiratory complexes result in oxidative phosphorylation dysfunction. An increase in the number of mitochondria occurs in the latter in order to compensate for the respiratory deficiency. This fact spurred the investigation into the presence of analogous mutations in thyroid oncocytic cells. In this study, the only available cell model of thyroid oncocytoma was utilised, the XTC-1 cell line, established from an oncocytic thyroid metastasis to the breast. In order to assess the energetic efficiency of these cells, they were incubated in a medium lacking glucose and supplemented instead with galactose. When subjected to such conditions, glycolysis is effectively inhibited and the cells are forced to use the mitochondria for energy production. Cell viability experiments revealed that XTC-1 cells were unable to survive in galactose medium. This was in marked contrast to the TPC-1 control cell line, a thyroid tumour cell line which does not display the oncocytic phenotype. In agreement with these findings, subsequent experiments assessing the levels of cellular ATP over incubation time in galactose medium, showed a drastic and continual decrease in ATP levels only in the XTC-1 cell line. Furthermore, experiments on digitonin-permeabilised cells revealed that the respiratory dysfunction in the latter was due to a defect in complex I of the respiratory chain. Subsequent experiments using cybrids demonstrated that this defect could be attributed to the mitochondrially-encoded subunits of complex I as opposed to the nuclearencoded subunits. Confirmation came with mtDNA sequencing, which detected the presence of a novel mutation in the ND1 subunit of complex I. In addition, a mutation in the cytochrome b subunit of complex III of the respiratory chain was detected. The fact that XTC-1 cells are unable to survive when incubated in galactose medium is consistent with the fact that many cancers are largely dependent on glycolysis for energy production. Indeed, numerous studies have shown that glycolytic inhibitors are able to induce apoptosis in various cancer cell lines. Subsequent experiments were therefore performed in order to identify the mode of XTC-1 cell death when subjected to the metabolic stress imposed by the forced use of the mitochondria for energy production. Cell shrinkage and mitochondrial fragmentation were observed in the dying cells, which would indicate an apoptotic type of cell death. Analysis of additional parameters however revealed a lack of both DNA fragmentation and caspase activation, thus excluding a classical apoptotic type of cell death. Interestingly, cleavage of the actin component of the cytoskeleton was observed, implicating the action of proteases in this mode of cell demise. However, experiments employing protease inhibitors failed to identify the specific protease involved. It has been reported in the literature that overexpression of Bcl-2 is able to rescue cells presenting a respiratory deficiency. As the XTC-1 cell line is not only respiration-deficient but also exhibits a marked decrease in Bcl-2 expression, it is a perfect model with which to study the relationship between Bcl-2 and oxidative phosphorylation in respiratory-deficient cells. Contrary to the reported literature studies on various cell lines harbouring defects in the respiratory chain, Bcl-2 overexpression was not shown to increase cell survival or rescue the energetic dysfunction in XTC-1 cells. Interestingly however, it had a noticeable impact on cell adhesion and morphology. Whereas XTC-1 cells shrank and detached from the growth surface under conditions of metabolic stress, Bcl-2-overexpressing XTC-1 cells appeared much healthier and were up to 45% more adherent. The target of Bcl-2 in this setting appeared to be the actin cytoskeleton, as the cleavage observed in XTC-1 cells expressing only endogenous levels of Bcl-2, was inhibited in Bcl-2-overexpressing cells. Thus, although unable to rescue XTC-1 cells in terms of cell viability, Bcl-2 is somehow able to stabilise the cytoskeleton, resulting in modifications in cell morphology and adhesion. The mitochondrial respiratory deficiency observed in cancer cells is thought not only to cause an increased dependency on glycolysis but it is also thought to blunt cellular responses to anticancer agents. The effects of several therapeutic agents were thus assessed for their death-inducing ability in XTC-1 cells. Cell viability experiments clearly showed that the cells were more resistant to stimuli which generate reactive oxygen species (tert-butylhydroperoxide) and to mitochondrial calcium-mediated apoptotic stimuli (C6-ceramide), as opposed to stimuli inflicting DNA damage (cisplatin) and damage to protein kinases(staurosporine). Various studies in the literature have reported that the peroxisome proliferator-activated receptor-coactivator 1(PGC-1α), which plays a fundamental role in mitochondrial biogenesis, is also involved in protecting cells against apoptosis caused by the former two types of stimuli. In accordance with these observations, real-time PCR experiments showed that XTC-1 cells express higher mRNA levels of this coactivator than do the control cells, implicating its importance in drug resistance. In conclusion, this study has revealed that XTC-1 cells, like many cancer cell lines, are characterised by a reduced energetic efficiency due to mitochondrial dysfunction. Said dysfunction has been attributed to mutations in respiratory genes encoded by the mitochondrial genome. Although the mechanism of cell demise in conditions of metabolic stress is unclear, the potential of targeting thyroid oncocytic cancers using glycolytic inhibitors has been illustrated. In addition, the discovery of mtDNA mutations in XTC-1 cells has enabled the use of this cell line as a model with which to study the relationship between Bcl-2 overexpression and oxidative phosphorylation in cells harbouring mtDNA mutations and also to investigate the significance of such mutations in establishing resistance to apoptotic stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer blends constitute a valuable way to produce relatively low cost new materials. A still open question concerns the miscibility of polyethylene blends. Deviations from the log-additivity rule of the newtonian viscosity are often taken as a signature of immiscibility of the two components. The aim of this thesis is to characterize the rheological behavior in shear and elongation of five series of LLDPE/LDPE blends whose parent polymers have been chosen with different viscosity and SCB content and length. Synergistic effects have been measured for both zero shear viscosity and melt strength. Both SCB length and viscosity ratio between the components have been found to be key parameters for the miscibility of the pure polymers. In particular the miscibility increases with increasing SCB length and with decreasing the LDPE molecular weight and viscosity. This rheological behavior has significant effects on the processability window of these blends when the uni or biaxial elongational flows are involved. The film blowing is one of the processes for which the synergistic effects above mentioned can be crucial. Small scale experiments of film blowing performed for one of the series of blends has demonstrated that the positive deviation of the melt strength enlarges the processability window. In particular, the bubble stability was found to improve or disappear when the melt strength of the samples increased. The blending of LDPE and LLDPE can even reduce undesired melt flow instability phenomena widening, as a consequence, the processability window in extrusion. One of the series of blends has been characterized by means of capillary rheometry in order to allow a careful morphological analysis of the surface of the extruded polymer jets by means of Scanning Electron Microscopy (SEM) with the aim to detect the very early stages of the small scale melt instabilty at low shear rates (sharksin) and to follow its subsequent evolution as long as the shear rate was increased. With this experimental procedure it was possible to evaluate the shear rate ranges corresponding to different flow regions: smooth extrudate surface (absence of instability), sharkskin (small scale instability produced at the capillary exit), stick-slip transition (instability involving the whole capillary wall) and gross melt fracture (i.e. a large scale "upstream" instability originating from the entrance region of the capillary). A quantitative map was finally worked out using which an assessment of the flow type for a given shear rate and blend composition can be predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lo scopo dello studio è quello di valutare il comportamento all’ecografia B mode e con mezzo di contrasto delle metastasi epatiche da tumore neuroendocrino ed individuare eventuali peculiariin base alla sede del tumore primitivo, al tipo istologico, al grado di differenziazione, al Ki 67 ed al tipo di marcatore bioumorale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmaceutical residues contaminate aquatic ecosystems as a result of their widespread human and veterinary usage. Since continuously released and not efficiently removed, certain pharmaceuticals exhibit pseudo-persistence thus generating concerns for the health of aquatic wildlife. This work aimed at assessing on mussels Mytilus galloprovincialis, under laboratory conditions, the effects of three pharmaceuticals, carbamazepine (antiepileptic), propranolol (β-blocker) and oxytetracycline (antibiotic), to evaluate if the human-based mode of action of these molecules is conserved in invertebrates. Furthermore, in the framework of the European MEECE Programme, mussels were exposed to oxytetracycline and copper at increasing temperatures, simulating variations due to climate changes. The effects of these compounds were assessed evaluating a battery of biomarkers, the expression of HSP70 proteins and changes in cAMP-related parameters. A decrease in lysosomal membrane stability, induction of oxidative stress, alterations of cAMP-dependent pathway and the induction of defense mechanisms were observed indicating the development of a stress syndrome, and a worsening in mussels health status. Data obtained in MEECE Programme confirmed that the toxicity of substances can be enhanced following changes in temperature. The alterations observed were obtained after exposure to pharmaceuticals at concentrations sometimes lower than those detected in the aquatic environment. Hence, further research is advisable regarding subtle effects of pharmaceuticals on non-target organisms. Furthermore, results obtained during a research stay in the laboratories of Cádiz University (Spain) are presented. The project aimed at measuring possible effects of polluted sediments in Algeciras Bay (Spain) and in Cádiz Bay, by assessing different physiological parameters in caged crabs Carcinus maenas and clams Ruditapes decussatus exposed in situ for 28 days. The neutral red retention assay was adapted to these species and proved to be a sensitive screening tool for the assessment of sediment quality.