3 resultados para Fractional anisotropy
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The research for this PhD project consisted in the application of the RFs analysis technique to different data-sets of teleseismic events recorded at temporary and permanent stations located in three distinct study regions: Colli Albani area, Northern Apennines and Southern Apennines. We found some velocity models to interpret the structures in these regions, which possess very different geologic and tectonics characteristics and therefore offer interesting case study to face. In the Colli Albani some of the features evidenced in the RFs are shared by all the analyzed stations: the Moho is almost flat and is located at about 23 km depth, and the presence of a relatively shallow limestone layer is a stable feature; contrariwise there are features which vary from station to station, indicating local complexities. Three seismic stations, close to the central part of the former volcanic edifice, display relevant anisotropic signatures with symmetry axes consistent with the emplacement of the magmatic chamber. Two further anisotropic layers are present at greater depth, in the lower crust and the upper mantle, respectively, with symmetry axes directions related to the evolution of the volcano complex. In Northern Apennines we defined the isotropic structure of the area, finding the depth of the Tyrrhenian (almost 25 km and flat) and Adriatic (40 km and dipping underneath the Apennines crests) Mohos. We determined a zone in which the two Mohos overlap, and identified an anisotropic body in between, involved in the subduction and going down with the Adiratic Moho. We interpreted the downgoing anisotropic layer as generated by post-subduction delamination of the top-slab layer, probably made of metamorphosed crustal rocks caught in the subduction channel and buoyantly rising toward the surface. In the Southern Apennines, we found the Moho depth for 16 seismic stations, and highlighted the presence of an anisotropic layer underneath each station, at about 15-20 km below the whole study area. The moho displays a dome-like geometry, as it is shallow (29 km) in the central part of the study area, whereas it deepens peripherally (down to 45 km); the symmetry axes of anisotropic layer, interpreted as a layer separating the upper and the lower crust, show a moho-related pattern, indicated by the foliation of the layer which is parallel to the Moho trend. Moreover, due to the exceptional seismic event occurred on April 6th next to L’Aquila town, we determined the Vs model for two station located next to the epicenter. An extremely high velocity body is found underneath AQU station at 4-10 km depth, reaching Vs of about 4 km/s, while this body is lacking underneath FAGN station. We compared the presence of this body with other recent works and found an anti-correlation between the high Vs body, the max slip patches and earthquakes distribution. The nature of this body is speculative since such high velocities are consistent with deep crust or upper mantle, but can be interpreted as a as high strength barrier of which the high Vs is a typical connotation.
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.
Resumo:
The Southern Tyrrhenian subduction system shows a complex interaction among asthenospheric flow, subducting slab and overriding plate. To shed light on the deformations and mechanical properties of the slab and surrounding mantle, I investigated seismic anisotropy and attenuation properties through the subduction region. I used both teleseisms and slab earthquakes, analyzing shear-wave splitting on SKS and S phases, respectively. The fast polarization directions φ, and the delay time, δt, were retrieved using the method of Silver and Chan [1991. SKS and S φ reveal a complex anisotropy pattern across the subduction zone. SKS-rays sample primarily the sub-slab region showing rotation of fast directions following the curved shape of the slab and very strong anisotropy. S-rays sample mainly the slab, showing variable φ and a smaller δt. SKS and S splitting reveals a well developed toroidal flow at SW edge of the slab, while at its NE edge the pattern is not very clear. This suggests that the anisotropy is controlled by the slab rollback, responsible for about 100 km slab parallel φ in the sub-slab mantle. The slab is weakly anisotropic, suggesting the asthenosphere as main source of anisotropy. To investigate the physical properties of the slab and surrounding regions, I analyzed the seismic P and S wave attenuation. By inverting high-quality S-waves t* from slab earthquakes, 3D attenuation models down to 300 km were obtained. Attenuation results image the slab as low-attenuation body, but with heterogeneous QS and QP structure showing spot of high attenuation , between 100-200 km depth, which could be due dehydration associated to the slab metamorphism. A low QS anomaly is present in the mantle wedge beneath the Aeolian volcanic arc and could indicate mantle melting and slab dehydration.