2 resultados para Fourier spectra

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.