3 resultados para Forecast models
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
Le scelte di asset allocation costituiscono un problema ricorrente per ogni investitore. Quest’ultimo è continuamente impegnato a combinare diverse asset class per giungere ad un investimento coerente con le proprie preferenze. L’esigenza di supportare gli asset manager nello svolgimento delle proprie mansioni ha alimentato nel tempo una vasta letteratura che ha proposto numerose strategie e modelli di portfolio construction. Questa tesi tenta di fornire una rassegna di alcuni modelli innovativi di previsione e di alcune strategie nell’ambito dell’asset allocation tattica, per poi valutarne i risvolti pratici. In primis verificheremo la sussistenza di eventuali relazioni tra la dinamica di alcune variabili macroeconomiche ed i mercati finanziari. Lo scopo è quello di individuare un modello econometrico capace di orientare le strategie dei gestori nella costruzione dei propri portafogli di investimento. L’analisi prende in considerazione il mercato americano, durante un periodo caratterizzato da rapide trasformazioni economiche e da un’elevata volatilità dei prezzi azionari. In secondo luogo verrà esaminata la validità delle strategie di trading momentum e contrarian nei mercati futures, in particolare quelli dell’Eurozona, che ben si prestano all’implementazione delle stesse, grazie all’assenza di vincoli sulle operazioni di shorting ed ai ridotti costi di transazione. Dall’indagine emerge che entrambe le anomalie si presentano con carattere di stabilità. I rendimenti anomali permangono anche qualora vengano utilizzati i tradizionali modelli di asset pricing, quali il CAPM, il modello di Fama e French e quello di Carhart. Infine, utilizzando l’approccio EGARCH-M, verranno formulate previsioni sulla volatilità dei rendimenti dei titoli appartenenti al Dow Jones. Quest’ultime saranno poi utilizzate come input per determinare le views da inserire nel modello di Black e Litterman. I risultati ottenuti, evidenziano, per diversi valori dello scalare tau, extra rendimenti medi del new combined vector superiori al vettore degli extra rendimenti di equilibrio di mercato, seppur con livelli più elevati di rischio.
Resumo:
The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.