10 resultados para Fluid-structure interaction
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.
Resumo:
Finite element techniques for solving the problem of fluid-structure interaction of an elastic solid material in a laminar incompressible viscous flow are described. The mathematical problem consists of the Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian formulation coupled with a non-linear structure model, considering the problem as one continuum. The coupling between the structure and the fluid is enforced inside a monolithic framework which computes simultaneously for the fluid and the structure unknowns within a unique solver. We used the well-known Crouzeix-Raviart finite element pair for discretization in space and the method of lines for discretization in time. A stability result using the Backward-Euler time-stepping scheme for both fluid and solid part and the finite element method for the space discretization has been proved. The resulting linear system has been solved by multilevel domain decomposition techniques. Our strategy is to solve several local subproblems over subdomain patches using the Schur-complement or GMRES smoother within a multigrid iterative solver. For validation and evaluation of the accuracy of the proposed methodology, we present corresponding results for a set of two FSI benchmark configurations which describe the self-induced elastic deformation of a beam attached to a cylinder in a laminar channel flow, allowing stationary as well as periodically oscillating deformations, and for a benchmark proposed by COMSOL multiphysics where a narrow vertical structure attached to the bottom wall of a channel bends under the force due to both viscous drag and pressure. Then, as an example of fluid-structure interaction in biomedical problems, we considered the academic numerical test which consists in simulating the pressure wave propagation through a straight compliant vessel. All the tests show the applicability and the numerical efficiency of our approach to both two-dimensional and three-dimensional problems.
Resumo:
Thanks to the increasing slenderness and lightness allowed by new construction techniques and materials, the effects of wind on structures became in the last decades a research field of great importance in Civil Engineering. Thanks to the advances in computers power, the numerical simulation of wind tunnel tests has became a valid complementary activity and an attractive alternative for the future. Due to its flexibility, during the last years, the computational approach gained importance with respect to the traditional experimental investigation. However, still today, the computational approach to fluid-structure interaction problems is not as widely adopted as it could be expected. The main reason for this lies in the difficulties encountered in the numerical simulation of the turbulent, unsteady flow conditions generally encountered around bluff bodies. This thesis aims at providing a guide to the numerical simulation of bridge deck aerodynamic and aeroelastic behaviour describing in detail the simulation strategies and setting guidelines useful for the interpretation of the results.
Resumo:
The aim of this thesis, included within the THESEUS project, is the development of a mathematical model 2DV two-phase, based on the existing code IH-2VOF developed by the University of Cantabria, able to represent together the overtopping phenomenon and the sediment transport. Several numerical simulations were carried out in order to analyze the flow characteristics on a dike crest. The results show that the seaward/landward slope does not affect the evolution of the flow depth and velocity over the dike crest whereas the most important parameter is the relative submergence. Wave heights decrease and flow velocities increase while waves travel over the crest. In particular, by increasing the submergence, the wave height decay and the increase of the velocity are less marked. Besides, an appropriate curve able to fit the variation of the wave height/velocity over the dike crest were found. Both for the wave height and for the wave velocity different fitting coefficients were determined on the basis of the submergence and of the significant wave height. An equation describing the trend of the dimensionless coefficient c_h for the wave height was derived. These conclusions could be taken into consideration for the design criteria and the upgrade of the structures. In the second part of the thesis, new equations for the representation of the sediment transport in the IH-2VOF model were introduced in order to represent beach erosion while waves run-up and overtop the sea banks during storms. The new model allows to calculate sediment fluxes in the water column together with the sediment concentration. Moreover it is possible to model the bed profile evolution. Different tests were performed under low-intensity regular waves with an homogeneous layer of sand on the bottom of a channel in order to analyze the erosion-deposition patterns and verify the model results.
Resumo:
This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.
Resumo:
This thesis presents a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The new ANN has been specifically developed in order to provide managers and scientists with a tool that can be efficiently used for design purposes. The development of this ANN started with the preparation of a new extended and homogeneous database that collects all the available tests reporting at least one of the three parameters, for a total amount of 16’165 data. The variety of structure types and wave attack conditions in the database includes smooth, rock and armour unit slopes, berm breakwaters, vertical walls, low crested structures, oblique wave attacks. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the training parameters of the ANN. Each of the selected 15 input parameters represents a physical aspect of the wave-structure interaction process, describing the wave attack (wave steepness and obliquity, breaking and shoaling factors), the structure geometry (submergence, straight or non-straight slope, with or without berm or toe, presence or not of a crown wall), or the structure type (smooth or covered by an armour layer, with permeable or impermeable core). The advanced ANN here proposed provides accurate predictions for all the three parameters, and demonstrates to overcome the limits imposed by the traditional formulae and approach adopted so far by some of the existing ANNs. The possibility to adopt just one model to obtain a handy and accurate evaluation of the overall performance of a coastal or harbor structure represents the most important and exportable result of the work.
Resumo:
La tesi di Dottorato studia il flusso sanguigno tramite un codice agli elementi finiti (COMSOL Multiphysics). Nell’arteria è presente un catetere Doppler (in posizione concentrica o decentrata rispetto all’asse di simmetria) o di stenosi di varia forma ed estensione. Le arterie sono solidi cilindrici rigidi, elastici o iperelastici. Le arterie hanno diametri di 6 mm, 5 mm, 4 mm e 2 mm. Il flusso ematico è in regime laminare stazionario e transitorio, ed il sangue è un fluido non-Newtoniano di Casson, modificato secondo la formulazione di Gonzales & Moraga. Le analisi numeriche sono realizzate in domini tridimensionali e bidimensionali, in quest’ultimo caso analizzando l’interazione fluido-strutturale. Nei casi tridimensionali, le arterie (simulazioni fluidodinamiche) sono infinitamente rigide: ricavato il campo di pressione si procede quindi all’analisi strutturale, per determinare le variazioni di sezione e la permanenza del disturbo sul flusso. La portata sanguigna è determinata nei casi tridimensionali con catetere individuando tre valori (massimo, minimo e medio); mentre per i casi 2D e tridimensionali con arterie stenotiche la legge di pressione riproduce l’impulso ematico. La mesh è triangolare (2D) o tetraedrica (3D), infittita alla parete ed a valle dell’ostacolo, per catturare le ricircolazioni. Alla tesi sono allegate due appendici, che studiano con codici CFD la trasmissione del calore in microcanali e l’ evaporazione di gocce d’acqua in sistemi non confinati. La fluidodinamica nei microcanali è analoga all’emodinamica nei capillari. Il metodo Euleriano-Lagrangiano (simulazioni dell’evaporazione) schematizza la natura mista del sangue. La parte inerente ai microcanali analizza il transitorio a seguito dell’applicazione di un flusso termico variabile nel tempo, variando velocità in ingresso e dimensioni del microcanale. L’indagine sull’evaporazione di gocce è un’analisi parametrica in 3D, che esamina il peso del singolo parametro (temperatura esterna, diametro iniziale, umidità relativa, velocità iniziale, coefficiente di diffusione) per individuare quello che influenza maggiormente il fenomeno.
Resumo:
This work investigates the slamming phenomenon experienced during the water entry of deformable bodies. Wedges are chosen as reference geometry due to their similarity to a generic hull section. Hull slamming is a phenomenon occurring when a ship re-enters the water after having been partially or completely lifted out the water. While the analysis of rigid structures entering the water has been extensively studied in the past and there are analytical solutions capable of correctly predicting the hydrodynamic pressure distribution and the overall impact dynamics, the effect of the structural deformation on the structural force is still a challenging problem to be solved. In fact, in case of water impact of deformable bodies, the dynamic deflection could interact with the fluid flow, changing the hydrodynamic load. This work investigates the hull-slamming problem by experiments and numerical simulations of the water entry of elastic wedges impacting on an initially calm surface. The effect of asymmetry due to horizontal velocity component or initial tilt angle on the impact dynamics is also studied. The objective of this work is to determine an accurate model to predict the overall dynamics of the wedge and its deformations. More than 1200 experiments were conducted by varying wedge structural stiffness, deadrise angle, impact velocity and mass. On interest are the overall impact dynamics and the local structural deformation of the panels composing the wedge. Alongside with the experimental analysis, numerical simulations based on a coupled Smoothed Particle Hydrodynamics (SPH) and FEM method are developed. The experimental results provide evidence of the mutual interaction between hydrodynamic load and structural deformation. It is found a simple criterion for the onset of fluid structure interaction (FSI), giving reliable information on the cases where FSI should been taken into account.
Resumo:
Longstanding debates concerning the origin of the Kess Kess Emsian carbonate mounds exposed at Hamar Laghdad Ridge (eastern Anti-Atlas, Morocco) centre around the processes that induced precipitation of carbonate mud and the preservation of steep morphologies. Although in the last years an origin related to hydrothermalism seemed to be more likely, to date the Kess Kess are still considered controversial vent deposits. This study combines in updated research review information from previous work and new detailed field observations coupled with new analytical results to define a consistent framework and some new insight of current knowledge about the origin of these mounds. We obtain a complete minero-petrographic and palaeobiological data set and a detailed geochemical characterization of the different lithologies and facies of the Hamar Laghdad stratigraphic succession, including mounds, and we compared the results with the data from Maïder Basin mounds (Anti-Atlas, Morocco). Our data support the hydrothermal model proposed for the genesis and development of the Kess Kess mounds. The mechanisms linked to the mounds formation and growth are discussed in the light of the new finding of fluid-sediment interaction within a scenario driven by late magmatic fluids circulation. Conical mounds and other fluids related morphologies were also reported from Crommelin crater area (Arabia Terra, Mars). These mounds consist in meter-sized conical buildups hosted in the Equatorial Layered Deposits (ELDs) deposed during a regional groundwater fluid upwelling. Geometries and geological conditions that might have controlled the development of such morphologies were discussed. According to our data the morphological and stratigraphical characteristics of Crommelin area mounds are most consistent with a formation by fluids advection. Then we compare terrestrial and Martian data and examine the geological settings of hydrothermal mound occurrences on Earth in order to describe potential target areas for hydrothermal structures on Mars.
Resumo:
My PhD project has been focused on the study of the pulsating variable stars in two ultra-faint dwarf spheroidal satellites of the Milky Way, namely, Leo IV and Hercules; and in two fields of the Large Magellanic Cloud (namely, the Gaia South Ecliptic Pole calibration field, and the 30 Doradus region) that were repeatedly observed in the KS band by the VISTA Magellanic Cloud (VMC, PI M.R. Cioni) survey of the Magellanic System.