7 resultados para Flower-bud differentiation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new formulate containing citokinins, that is commercialized as Cytokin, has been introduced as dormancy breaking agents. During a three-years study, Cytokin was applied at different concentrations and application times in two producing areas of the Emilia-Romagna region to verify its efficacy as a DBA. Cytokin application increased the bud break and showed a lateral flower thinning effect. Moreover, treated vines showed an earlier and more uniform flowering as compared to control ones. Results obtained on the productive performance revealed a constant positive effect in the fruit fresh weight at harvest. Moreover, Cytokin did not cause any phytotoxicity even at the highest concentrations. Starting from the field observation, which suggested the involvement of cytokinins in kiwifruit bud release from dormancy, 6-BA was applied in open field condition and molecular and histological analyses were carried out in kiwifruit buds collected starting from the endo dormant period up to complete bud break to compare the natural occurring situation to the one induced by exogenous cytokinin application. In details, molecular analyses were set up on to verify the expression of genes involved in the reactivation of cell cycle: cyclin D3, histone H4, cyclin-dependent kinase B, as well as of others which are known to be up regulated during bud release in other species, i.e.isopenteniltransferases (IPTs), which catalyze the first step in the CK biosynthesis, and sucrose synthase 1 and A, which are involved in the sugar supplied. Moreover, histological analyses of the cell division rate in kiwifruit bud apical meristems were performed. These analyses showed a reactivation of the cell divisions during bud release and changes in the expression level of the investigated genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral thesis aims at contributing to the literature on transition economies focusing on the Russian Federations and in particular on regional income convergence and fertility patterns. The first two chapter deal with the issue of income convergence across regions. Chapter 1 provides an historical-institutional analysis of the period between the late years of the Soviet Union and the last decade of economic growth and a presentation of the sample with a description of gross regional product composition, agrarian or industrial vocation, labor. Chapter 2 contributes to the literature on exploratory spatial data analysis with a application to a panel of 77 regions in the period 1994-2008. It provides an analysis of spatial patterns and it extends the theoretical framework of growth regressions controlling for spatial correlation and heterogeneity. Chapter 3 analyses the national demographic patterns since 1960 and provides a review of the policies on maternity leave and family benefits. Data sources are the Statistical Yearbooks of USSR, the Statistical Yearbooks of the Russian Soviet Federative Socialist Republic and the Demographic Yearbooks of Russia. Chapter 4 analyses the demographic patterns in light of the theoretical framework of the Becker model, the Second Demographic Transition and an economic-crisis argument. With national data from 1960, the theoretically issue of the pro or countercyclical relation between income and fertility is graphically analyzed and discussed, together with female employment and education. With regional data after 1994 different panel data models are tested. Individual level data from the Russian Longitudinal Monitoring Survey are employed using the logit model. Chapter 5 employs data from the Generations and Gender Survey by UNECE to focus on postponement and second births intentions. Postponement is studied through cohort analysis of mean maternal age at first birth, while the methodology used for second birth intentions is the ordered logit model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Derivation of stem cell lines from domesticated animals has been of great interest as it benefits translational medicine, clinical applications to improve human and animal health and biotechnology. The main types of stem cells studied are Embryonic Stem Cells (ESCs), induced Pluripotent Stem Cells (iPSCs) and Mesenchymal Stem/Stromal Cells (MSCs). This thesis had two main aims: (I) The isolation of bovine MSCs from amniotic fluid (AF) at different trimesters of pregnancy and their characterization to study pluripotency markers expression. Stemness markers were studied also in MSCs isolated from equine AF, Wharton’s jelly (WJ) and umbilical cord blood (UCB) as continuation of the characterization of these cells previously performed by our research group; (II) The establishment and characterization of iPSCs lines in two attractive large animal models for biomedical and biotechnology research such as the bovine and the swine, and the differentiation into the myogenic lineage of porcine iPSCs. It was observed that foetal tissues in domestic animals such as the bovine and the horse represent a source of MSCs able to differentiate into the mesodermal lineage but they do not proliferate indefinitely and they lack the expression of many pluripotency markers, making them an interesting source of cells for regenerative medicine, but not the best candidate to elucidate pluripotency networks. The protocol used to induce pluripotency in bovine fibroblasts did not work, as well as the chemical induction of pluripotency in porcine fibroblasts, while the reprogramming protocol used for porcine iPSCs was successful and the line generated was amenable to being differentiated into the myogenic lineage, demonstrating that they could be addressed into a desired lineage by genetic modification and appropriated culture conditions. Only a few cell types have been differentiated from domestic animal iPSCs to date, so the development of a reliable directed-differentiation protocol represents a very important result.