6 resultados para Flow-induced drop coalescence

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of carbonate reservoir is oil-wet, which is an unfavorable condition for oil production. Generally, the total oil recovery after both primary and secondary recovery in an oil-wet reservoir is low. The amount of producible oil by enhanced oil recovery techniques is still large. Alkali substances are proven to be able to reverse rock wettability from oil-wet to water-wet, which is a favorable condition for oil production. However, the wettability reversal mechanism would require a noneconomical aging period to reach the maximum reversal condition. An intermittent flow with the optimum pausing period is then combined with alkali flooding (combination technique) to increase the wettability reversal mechanism and as a consequence, oil recovery is improved. The aims of this study are to evaluate the efficiency of the combination technique and to study the parameters that affect this method. In order to implement alkali flooding, reservoir rock and fluid properties were gathered, e.g. interfacial tension of fluids, rock wettability, etc. The flooding efficiency curves are obtained from core flooding and used as a major criterion for evaluation the performance of technique. The combination technique improves oil recovery when the alkali concentration is lower than 1% wt. (where the wettability reversal mechanism is dominant). The soap plug (that appears when high alkali concentration is used) is absent in this combination as seen from no drop of production rate. Moreover, the use of low alkali concentration limits alkali loss. This combination probably improves oil recovery also in the fractured carbonate reservoirs in which oil is uneconomically produced. The results from the current study indicate that the combination technique is an option that can improve the production of carbonate reservoirs. And a less quantity of alkali is consumed in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt deposits characterize the subsurface of Tuzla (BiH) and made it famous since the ancient times. Archeological discoveries demonstrate the presence of a Neolithic pile-dwelling settlement related to the existence of saltwater springs that contributed to make the most of the area a swampy ground. Since the Roman times, the town is reported as “the City of Salt deposits and Springs”; "tuz" is the Turkish word for salt, as the Ottomans renamed the settlement in the 15th century following their conquest of the medieval Bosnia (Donia and Fine, 1994). Natural brine springs were located everywhere and salt has been evaporated by means of hot charcoals since pre-Roman times. The ancient use of salt was just a small exploitation compared to the massive salt production carried out during the 20th century by means of classical mine methodologies and especially wild brine pumping. In the past salt extraction was practised tapping natural brine springs, while the modern technique consists in about 100 boreholes with pumps tapped to the natural underground brine runs, at an average depth of 400-500 m. The mining operation changed the hydrogeological conditions enabling the downward flow of fresh water causing additional salt dissolution. This process induced severe ground subsidence during the last 60 years reaching up to 10 meters of sinking in the most affected area. Stress and strain of the overlying rocks induced the formation of numerous fractures over a conspicuous area (3 Km2). Consequently serious damages occurred to buildings and infrastructures such as water supply system, sewage networks and power lines. Downtown urban life was compromised by the destruction of more than 2000 buildings that collapsed or needed to be demolished causing the resettlement of about 15000 inhabitants (Tatić, 1979). Recently salt extraction activities have been strongly reduced, but the underground water system is returning to his natural conditions, threatening the flooding of the most collapsed area. During the last 60 years local government developed a monitoring system of the phenomenon, collecting several data about geodetic measurements, amount of brine pumped, piezometry, lithostratigraphy, extension of the salt body and geotechnical parameters. A database was created within a scientific cooperation between the municipality of Tuzla and the city of Rotterdam (D.O.O. Mining Institute Tuzla, 2000). The scientific investigation presented in this dissertation has been financially supported by a cooperation project between the Municipality of Tuzla, The University of Bologna (CIRSA) and the Province of Ravenna. The University of Tuzla (RGGF) gave an important scientific support in particular about the geological and hydrogeological features. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well understood in a few areas (Gutierrez et al., 2008). The subject of this study is the collapsing phenomenon occurring in Tuzla area with the aim to identify and quantify the several factors involved in the system and their correlations. Tuzla subsidence phenomenon can be defined as geohazard, which represents the consequence of an adverse combination of geological processes and ground conditions precipitated by human activity with the potential to cause harm (Rosenbaum and Culshaw, 2003). Where an hazard induces a risk to a vulnerable element, a risk management process is required. The single factors involved in the subsidence of Tuzla can be considered as hazards. The final objective of this dissertation represents a preliminary risk assessment procedure and guidelines, developed in order to quantify the buildings vulnerability in relation to the overall geohazard that affect the town. The historical available database, never fully processed, have been analyzed by means of geographic information systems and mathematical interpolators (PART I). Modern geomatic applications have been implemented to deeply investigate the most relevant hazards (PART II). In order to monitor and quantify the actual subsidence rates, geodetic GPS technologies have been implemented and 4 survey campaigns have been carried out once a year. Subsidence related fractures system has been identified by means of field surveys and mathematical interpretations of the sinking surface, called curvature analysis. The comparison of mapped and predicted fractures leaded to a better comprehension of the problem. Results confirmed the reliability of fractures identification using curvature analysis applied to sinking data instead of topographic or seismic data. Urban changes evolution has been reconstructed analyzing topographic maps and satellite imageries, identifying the most damaged areas. This part of the investigation was very important for the quantification of buildings vulnerability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of optic flow on postural control may explain how self-motion perception contributes to postural stability in young males and females and how such function changes in the old falls risk population. Study I: The aim was to examine the optic flow effect on postural control in young people (n=24), using stabilometry and surface-electromyography. Subjects viewed expansion and contraction optic flow stimuli which were presented full field, in the foveral or in the peripheral visual field. Results showed that optic flow stimulation causes an asymmetry in postural balance and a different lateralization of postural control in men and women. Gender differences evoked by optic flow were found both in the muscle activity and in the prevalent direction of oscillation. The COP spatial variability was reduced during the view of peripheral stimuli which evoked a clustered prevalent direction of oscillation, while foveal and random stimuli induced non-distributed directions. Study II was aimed at investigating the age-related mechanisms of postural stability during the view of optic flow stimuli in young (n=17) and old (n=19) people, using stabilometry and kinematic. Results showed that old people showed a greater effort to maintain posture during the view of optic flow stimuli than the young. Elderly seems to use the head stabilization on trunk strategy. Visual stimuli evoke an excitatory input on postural muscles, but the stimulus structure produces different postural effects. Peripheral optic flow stabilizes postural sway, while random and foveal stimuli provoke larger sway variability similar to those evoked in baseline. Postural control uses different mechanisms within each leg to produce the appropriate postural response to interact with extrapersonal environment. Ageing reduce the effortlessness to stabilize posture during optic flow, suggesting a neuronal processing decline associated with difficulty integrating multi-sensory information of self-motion perception and increasing risk of falls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with the experimental investigation of turbulent pipe flow at high Reynolds number. Wall-bounded turbulence is an extremely relevant topic for engineering and natural science applications and yet many aspects of the physics are not clear due to the difficulty in performing high Re experiments. To overcome these difficulties the CICLoPE Laboratory was developed, the main element of which is the Long Pipe wind tunnel. The facility is unique in its kind, as thanks to its large scale it delivers a flow quality and resolution that can not be achieved elsewhere at these Reynolds number. Reported here are the results from the first experimental campaign performed in the facility. A first part of the results presented concerns the characterization of this new facility. Flow quality and stability are assessed, particular attention is given to the characterization of pressure drop. The scaling of velocity fluctuations is analysed. The magnitude of the inner peak of the streamwise normal stress shows an increasing trend up to the highest Reynolds number examined, while no outer peak was clearly distinguishable from present measurements. Scaling of coherent motions is investigated via spectral analysis. An inner and outer spectral peaks are identified, with the former scaling in inner units while the latter neither following inner nor outer scaling, and increasing in magnitude with Re. Analysis of the spectra at y+ ≈ 15 shows how the increase of Reynolds normal stress is related to the influence of large scales in the inner wall region. Quadrant analysis was carried out on streamwise and wall-normal velocity fluctuations. The results show the important role in contribution to Reynolds shear stress of highly intermittent and strong events like ejections, that assume an even more intermittent and dominant role with the increase of Reynolds number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the lubrication theory is used to model flow in geological fractures and analyse the compound effect of medium heterogeneity and complex fluid rheology. Such studies are warranted as the Newtonian rheology is adopted in most numerical models because of its ease of use, despite non-Newtonian fluids being ubiquitous in subsurface applications. Past studies on Newtonian and non-Newtonian flow in single rock fractures are summarized in Chapter 1. Chapter 2 presents analytical and semi-analytical conceptual models for flow of a shear-thinning fluid in rock fractures having a simplified geometry, providing a first insight on their permeability. in Chapter 3, a lubrication-based 2-D numerical model is first implemented to solve flow of an Ellis fluid in rough fractures; the finite-volumes model developed is more computationally effective than conducting full 3-D simulations, and introduces an acceptable approximation as long as the flow is laminar and the fracture walls relatively smooth. The compound effect of shear-thinning fluid nature and fracture heterogeneity promotes flow localization, which in turn affects the performance of industrial activities and remediation techniques. In Chapter 4, a Monte Carlo framework is adopted to produce multiple realizations of synthetic fractures, and analyze their ensemble statistics pertaining flow for a variety of real non-Newtonian fluids; the Newtonian case is used as a benchmark. In Chapter 5 and Chapter 6, a conceptual model of the hydro-mechanical aspects of backflow occurring in the last phase of hydraulic fracturing is proposed and experimentally validated, quantifying the effects of the relaxation induced by the flow.