3 resultados para Flooding problem in the fields
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.
Resumo:
This thesis proposes a solution for board cutting in the wood industry with the aim of usage minimization and machine productivity. The problem is dealt with as a Two-Dimensional Cutting Stock Problem and specific Combinatorial Optimization methods are used to solve it considering the features of the real problem.
Resumo:
The thesis has extensively investigated for the first time the statistical distributions of atmospheric surface variables and heat fluxes for the Mediterranean Sea. After retrieving a 30-year atmospheric analysis dataset, we have captured the spatial patterns of the probability distribution of the relevant atmospheric variables for ocean atmospheric forcing: wind components (U,V), wind amplitude, air temperature (T2M), dewpoint temperature (D2M) and mean sea-level pressure (MSL-P). The study reveals that a two-parameter PDF is not a good fit for T2M, D2M, MSL-P and wind components (U,V) and a three parameter skew-normal PDF is better suited. Such distribution captures properly the data asymmetric tails (skewness). After removing the large seasonal cycle, we show the quality of the fit and the geographic structure of the PDF parameters. It is found that the PDF parameters vary between different regions, in particular the shape (connected to the asymmetric tails) and the scale (connected to the spread of the distribution) parameters cluster around two or more values, probably connected to the different dynamics that produces the surface atmospheric fields in the Mediterranean basin. Moreover, using the atmospheric variables, we have computed the air-sea heat fluxes for a 20-years period and estimated the net heat budget over the Mediterranean Sea. Interestingly, the higher resolution analysis dataset provides a negative heat budget of –3 W/m2 which is within the acceptable range for the Mediterranean Sea heat budget closure. The lower resolution atmospheric reanalysis dataset(ERA5) does not satisfy the heat budget closure problem pointing out that a minimal resolution of the atmospheric forcing is crucial for the Mediterranean Sea dynamics. The PDF framework developed in this thesis will be the basis for a future ensemble forecasting system that will use the statistical distributions to create perturbations of the atmospheric ocean forcing.