4 resultados para Flood risk management
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Over the last decades the impact of natural disasters to the global environment is becoming more and more severe. The number of disasters has dramatically increased, as well as the cost to the global economy and the number of people affected. Among the natural disaster, flood catastrophes are considered to be the most costly, devastating, broad extent and frequent, because of the tremendous fatalities, injuries, property damage, economic and social disruption they cause to the humankind. In the last thirty years, the World has suffered from severe flooding and the huge impact of floods has caused hundreds of thousands of deaths, destruction of infrastructures, disruption of economic activity and the loss of property for worth billions of dollars. In this context, satellite remote sensing, along with Geographic Information Systems (GIS), has become a key tool in flood risk management analysis. Remote sensing for supporting various aspects of flood risk management was investigated in the present thesis. In particular, the research focused on the use of satellite images for flood mapping and monitoring, damage assessment and risk assessment. The contribution of satellite remote sensing for the delineation of flood prone zones, the identification of damaged areas and the development of hazard maps was explored referring to selected cases of study.
Resumo:
La Comunità Europea, alla luce dei recenti eventi alluvionali occorsi nei Paesi Membri ed al progressivo aumento dei danni economici da essi provocati, ha recentemente emanato una direttiva (Direttiva Europea 2007/60/CE, Flood Directive) per la valutazione e la predisposizione di piani di gestione del rischio idraulico alluvionale. Con riferimento a tale contesto l’attività di ricerca condotta si è concentrata sulla valutazione delle potenzialità offerte dalla modellistica numerico-idraulica mono e bidimensionale quale strumento per l’attuazione della Direttiva 2007/60. Le attività sono state affrontate ponendo particolare attenzione alla valutazione dei termini di incertezza che caratterizzano l’applicazione dei modelli numerico-idraulici, esaminando i possibili effetti di tale incertezza sulla mappatura della pericolosità idraulica. In particolare, lo studio si concentra su diversi tratti fluviali del corso medio inferiore del Fiume Po e si articola in tre parti: 1) analisi dell’incertezza connessa alla definizione delle scale di deflusso in una generica sezione fluviale e valutazione dei suoi effetti sulla calibrazione dei modelli numerici quasi-bidimensionali (quasi-2D); 2) definizione di mappe probabilistiche di allagamento per tratti fluviali arginati in presenza di tre sorgenti di incertezza: incertezza nelle condizioni al contorno di monte, nelle condizioni di valle e nell’identificazione delle eventuali brecce arginali; 3) valutazione dell’applicabilità di un modello quasi-2D per la definizione, a grande scala spaziale, di strategie alternative al tradizionale rialzo dei manufatti arginali per la mitigazione del rischio alluvionale associato a eventi di piena catastrofici. Le analisi condotte, oltre ad aver definito e valutato le potenzialità di metodologie e modelli idraulici a diversa complessità, hanno evidenziato l’entità e l’impatto dei più importanti elementi d’incertezza, sottolineando come la corretta mappatura della pericolosità idraulica debba sempre essere accompagnata da una valutazione della sua incertezza.
Resumo:
Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.
Resumo:
This PhD Thesis is composed of three chapters, each discussing a specific type of risk that banks face. The first chapter talks about Systemic Risk and how banks get exposed to it through the Interbank Funding Market. Exposures in the said market have Systemic Risk implications because the market creates linkages, where the failure of one party can affect the others in the market. By showing that CDS Spreads, as bank risk indicators, are positively related to their Net Interbank Funding Market Exposures, this chapter establishes the above Systemic Risk Implications of Interbank Funding. Meanwhile, the second chapter discusses how banks may handle Illiquidity Risk, defined as the possibility of having sudden funding needs. Illiquidity Risk is embodied in this chapter through Loan Commitments as they oblige banks to lend to its clients, up to a certain amount of funds at any time. This chapter points out that using Securitization as funding facility, could allow the banks to manage this Illiquidity Risk. To make this case, this chapter demonstrates empirically that banks having an increase in Loan Commitments, may experience an increase in risk profile but such can be offset by an accompanying increase in Securitization Activity. Lastly, the third chapter focuses on how banks manage Credit Risk also through Securitization. Securitization has a Credit Risk management property by allowing the offloading of risk. This chapter investigates how banks use such property by looking at the effect of securitization on the banks’ loan portfolios and overall risk and returns. The findings are that securitization is positively related to loan portfolio size and the portfolio share of risky loans, which translates to higher risk and returns. Thus, this chapter points out that Credit Risk management through Securitization may be have been done towards higher risk taking for high returns.