4 resultados para Fleet Vehicles.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work tries to display a comprehensive and comparative study of the different legal and regulatory problems involved in international securitization transactions. First, an introduction to securitization is provided, with the basic elements of the transaction, followed by the different varieties of it, including dynamic securitization and synthetic securitization structures. Together with this introduction to the intricacies of the structure, a insight into the influence of securitization in the financial and economic crisis of 2007-2009 is provided too; as well as an overview of the process of regulatory competition and cooperation that constitutes the framework for the international aspects of securitization. The next Chapter focuses on the aspects that constitute the foundations of structured finance: the inception of the vehicle, and the transfer of risks associated to the securitized assets, with particular emphasis on the validity of those elements, and how a securitization transaction could be threatened at its root. In this sense, special importance is given to the validity of the trust as an instrument of finance, to the assignment of future receivables or receivables in block, and to the importance of formalities for the validity of corporations, trusts, assignments, etc., and the interaction of such formalities contained in general corporate, trust and assignment law with those contemplated under specific securitization regulations. Then, the next Chapter (III) focuses on creditor protection aspects. As such, we provide some insights on the debate on the capital structure of the firm, and its inadequacy to assess the financial soundness problems inherent to securitization. Then, we proceed to analyze the importance of rules on creditor protection in the context of securitization. The corollary is in the rules in case of insolvency. In this sense, we divide the cases where a party involved in the transaction goes bankrupt, from those where the transaction itself collapses. Finally, we focus on the scenario where a substance over form analysis may compromise some of the elements of the structure (notably the limited liability of the sponsor, and/or the transfer of assets) by means of veil piercing, substantive consolidation, or recharacterization theories. Once these elements have been covered, the next Chapters focus on the regulatory aspects involved in the transaction. Chapter IV is more referred to “market” regulations, i.e. those concerned with information disclosure and other rules (appointment of the indenture trustee, and elaboration of a rating by a rating agency) concerning the offering of asset-backed securities to the public. Chapter V, on the other hand, focuses on “prudential” regulation of the entity entrusted with securitizing assets (the so-called Special Purpose vehicle), and other entities involved in the process. Regarding the SPV, a reference is made to licensing requirements, restriction of activities and governance structures to prevent abuses. Regarding the sponsor of the transaction, a focus is made on provisions on sound originating practices, and the servicing function. Finally, we study accounting and banking regulations, including the Basel I and Basel II Frameworks, which determine the consolidation of the SPV, and the de-recognition of the securitized asset from the originating company’s balance-sheet, as well as the posterior treatment of those assets, in particular by banks. Chapters VI-IX are concerned with liability matters. Chapter VI is an introduction to the different sources of liability. Chapter VII focuses on the liability by the SPV and its management for the information supplied to investors, the management of the asset pool, and the breach of loyalty (or fiduciary) duties. Chapter VIII rather refers to the liability of the originator as a result of such information and statements, but also as a result of inadequate and reckless originating or servicing practices. Chapter IX finally focuses on third parties entrusted with the soundness of the transaction towards the market, the so-called gatekeepers. In this respect, we make special emphasis on the liability of indenture trustees, underwriters and rating agencies. Chapters X and XI focus on the international aspects of securitization. Chapter X contains a conflicts of laws analysis of the different aspects of structured finance. In this respect, a study is made of the laws applicable to the vehicle, to the transfer of risks (either by assignment or by means of derivatives contracts), to liability issues; and a study is also made of the competent jurisdiction (and applicable law) in bankruptcy cases; as well as in cases where a substance-over-form is performed. Then, special attention is also devoted to the role of financial and securities regulations; as well as to their territorial limits, and extraterritoriality problems involved. Chapter XI supplements the prior Chapter, for it analyzes the limits to the States’ exercise of regulatory power by the personal and “market” freedoms included in the US Constitution or the EU Treaties. A reference is also made to the (still insufficient) rules from the WTO Framework, and their significance to the States’ recognition and regulation of securitization transactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study three combinatorial optimization problems belonging to the classes of Network Design and Vehicle Routing problems that are strongly linked in the context of the design and management of transportation networks: the Non-Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW). These problems are NP-hard and contain as special cases some well known difficult problems such as the Traveling Salesman Problem and the Steiner Tree Problem. Moreover, they model the core structure of many practical problems arising in logistics and telecommunications. The NBP is the problem of designing the optimum network to satisfy a given set of traffic demands. Given a set of nodes, a set of potential links and a set of point-to-point demands called commodities, the objective is to select the links to install and dimension their capacities so that all the demands can be routed between their respective endpoints, and the sum of link fixed costs and commodity routing costs is minimized. The problem is called non- bifurcated because the solution network must allow each demand to follow a single path, i.e., the flow of each demand cannot be splitted. Although this is the case in many real applications, the NBP has received significantly less attention in the literature than other capacitated network design problems that allow bifurcation. We describe an exact algorithm for the NBP that is based on solving by an integer programming solver a formulation of the problem strengthened by simple valid inequalities and four new heuristic algorithms. One of these heuristics is an adaptive memory metaheuristic, based on partial enumeration, that could be applied to a wider class of structured combinatorial optimization problems. In the PVRP a fleet of vehicles of identical capacity must be used to service a set of customers over a planning period of several days. Each customer specifies a service frequency, a set of allowable day-combinations and a quantity of product that the customer must receive every time he is visited. For example, a customer may require to be visited twice during a 5-day period imposing that these visits take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The problem consists in simultaneously assigning a day- combination to each customer and in designing the vehicle routes for each day so that each customer is visited the required number of times, the number of routes on each day does not exceed the number of vehicles available, and the total cost of the routes over the period is minimized. We also consider a tactical variant of this problem, called Tactical Planning Vehicle Routing Problem, where customers require to be visited on a specific day of the period but a penalty cost, called service cost, can be paid to postpone the visit to a later day than that required. At our knowledge all the algorithms proposed in the literature for the PVRP are heuristics. In this thesis we present for the first time an exact algorithm for the PVRP that is based on different relaxations of a set partitioning-like formulation. The effectiveness of the proposed algorithm is tested on a set of instances from the literature and on a new set of instances. Finally, the PDPTW is to service a set of transportation requests using a fleet of identical vehicles of limited capacity located at a central depot. Each request specifies a pickup location and a delivery location and requires that a given quantity of load is transported from the pickup location to the delivery location. Moreover, each location can be visited only within an associated time window. Each vehicle can perform at most one route and the problem is to satisfy all the requests using the available vehicles so that each request is serviced by a single vehicle, the load on each vehicle does not exceed the capacity, and all locations are visited according to their time window. We formulate the PDPTW as a set partitioning-like problem with additional cuts and we propose an exact algorithm based on different relaxations of the mathematical formulation and a branch-and-cut-and-price algorithm. The new algorithm is tested on two classes of problems from the literature and compared with a recent branch-and-cut-and-price algorithm from the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid vehicles (HV), comprising a conventional ICE-based powertrain and a secondary energy source, to be converted into mechanical power as well, represent a well-established alternative to substantially reduce both fuel consumption and tailpipe emissions of passenger cars. Several HV architectures are either being studied or already available on market, e.g. Mechanical, Electric, Hydraulic and Pneumatic Hybrid Vehicles. Among the others, Electric (HEV) and Mechanical (HSF-HV) parallel Hybrid configurations are examined throughout this Thesis. To fully exploit the HVs potential, an optimal choice of the hybrid components to be installed must be properly designed, while an effective Supervisory Control must be adopted to coordinate the way the different power sources are managed and how they interact. Real-time controllers can be derived starting from the obtained optimal benchmark results. However, the application of these powerful instruments require a simplified and yet reliable and accurate model of the hybrid vehicle system. This can be a complex task, especially when the complexity of the system grows, i.e. a HSF-HV system assessed in this Thesis. The first task of the following dissertation is to establish the optimal modeling approach for an innovative and promising mechanical hybrid vehicle architecture. It will be shown how the chosen modeling paradigm can affect the goodness and the amount of computational effort of the solution, using an optimization technique based on Dynamic Programming. The second goal concerns the control of pollutant emissions in a parallel Diesel-HEV. The emissions level obtained under real world driving conditions is substantially higher than the usual result obtained in a homologation cycle. For this reason, an on-line control strategy capable of guaranteeing the respect of the desired emissions level, while minimizing fuel consumption and avoiding excessive battery depletion is the target of the corresponding section of the Thesis.