24 resultados para Fisica matematica
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
In questa Tesi vengono trattati alcuni temi relativi alla modellizzazione matematica delle Transizioni di Fase, il cui filo conduttore è la descrizione basata su un parametro d'ordine, originato dalla Teoria di Landau. Dopo aver presentato in maniera generale un modo di approccio alla dinamica delle transizioni mediante campo di fase, con particolare attenzione al problema della consistenza termodinamica nelle situazioni non isoterme, si considerano tre applicazioni di tale metodo a transizioni di fase specifiche: la transizione ferromagnetica, la transizione superconduttrice e la transizione martensitica nelle leghe a memoria di forma (SMA). Il contributo maggiore viene fornito nello studio di quest'ultima transizione di fase per la quale si è elaborato un modello a campo di fase termodinamicamente consistente, atto a descriverne le proprietà termomeccaniche essenziali.
Resumo:
The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi- population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution for the model is provided in the thermodynamical limit by nding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach, to be considered in future work.
Resumo:
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Resumo:
This thesis addresses the issue of generating texts in the style of an existing author, that also satisfy structural constraints imposed by the genre of the text. Although Markov processes are known to be suitable for representing style, they are difficult to control in order to satisfy non-local properties, such as structural constraints, that require long distance modeling. The framework of Constrained Markov Processes allows to precisely generate texts that are consistent with a corpus, while being controllable in terms of rhymes and meter. Controlled Markov processes consist in reformulating Markov processes in the context of constraint satisfaction. The thesis describes how to represent stylistic and structural properties in terms of constraints in this framework and how this approach can be used for the generation of lyrics in the style of 60 differents authors An evaluation of the desctibed method is provided by comparing it to both pure Markov and pure constraint-based approaches. Finally the thesis describes the implementation of an augmented text editor, called Perec. Perec is intended to improve creativity, by helping the user to write lyrics and poetry, exploiting the techniques presented so far.
Resumo:
In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, using experimentally reliable technologies in order to be able to test such a system as soon as possible. In this thesis, different transport lines are analyzed. The first is based on a high field pulsed solenoid, some collimators and, for perfect filtering and post-acceleration, a high field high frequency compact linear accelerator, originally designed to accelerate a 30 MeV beam extracted from a cyclotron. The second one is based on a quadruplet of permanent magnetic quadrupoles: thanks to its greater simplicity and reliability, it has great interest for experiments, but the effectiveness is lower than the one based on the solenoid; in fact, the final beam intensity drops by an order of magnitude. An additional sensible decrease in intensity is verified in the third case, where the energy selection is achieved using a chicane, because of its very low efficiency for off-axis protons. The proposed schemes have all been analyzed with 3D simulations and all the significant results are presented. Future experimental work based on the outcome of this thesis can be planned and is being discussed now.
Resumo:
This work deals with the theory of Relativity and its diffusion in Italy in the first decades of the XX century. Not many scientists belonging to Italian universities were active in understanding Relativity, but two of them, Max Abraham and Tullio Levi-Civita left a deep mark. Max Abraham engaged a substantial debate against Einstein between 1912 and 1914 about electromagnetic and gravitation aspects of the theories. Levi-Civita played a fundamental role in giving Einstein the correct mathematical instruments for the General Relativity formulation since 1915. This work, which doesn't have the aim of a mere historical chronicle of the events, wants to highlight two particular perspectives: on one hand, the importance of Abraham-Einstein debate in order to clarify the basis of Special Relativity, to observe the rigorous logical structure resulting from a fragmentary reasoning sequence and to understand Einstein's thinking; on the other hand, the originality of Levi-Civita's approach, quite different from the Einstein's one, characterized by the introduction of a method typical of General Relativity even to Special Relativity and the attempt to hide the two Einstein Special Relativity postulates.
Resumo:
In this work I reported recent results in the field of Statistical Mechanics of Equilibrium, and in particular in Spin Glass models and Monomer Dimer models . We start giving the mathematical background and the general formalism for Spin (Disordered) Models with some of their applications to physical and mathematical problems. Next we move on general aspects of the theory of spin glasses, in particular to the Sherrington-Kirkpatrick model which is of fundamental interest for the work. In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick model (MSK), we prove the existence of the thermodynamical limit and the Guerra's Bound for the quenched pressure together with a detailed analysis of the annealed and the replica symmetric regime. The result is a multidimensional generalization of the Parisi's theory. Finally we brie y illustrate the strategy of the Panchenko's proof of the lower bound. In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-Guerra identities for a wide class of Spin Glass models. As an example of application, we discuss the role of these identities in the proof of the lower bound. In Chapter 5 we introduce the basic mathematical formalism of Monomer Dimer models. We introduce a Gaussian representation of the partition function that will be fundamental in the rest of the work. In Chapter 6, we introduce an interacting Monomer-Dimer model. Its exact solution is derived and a detailed study of its analytical properties and related physical quantities is performed. In Chapter 7, we introduce a quenched randomness in the Monomer Dimer model and show that, under suitable conditions the pressure is a self averaging quantity. The main result is that, if we consider randomness only in the monomer activity, the model is exactly solvable.
Resumo:
The subject of this work concerns the study of the immigration phenomenon, with emphasis on the aspects related to the integration of an immigrant population in a hosting one. Aim of this work is to show the forecasting ability of a recent finding where the behavior of integration quantifiers was analyzed and investigated with a mathematical model of statistical physics origins (a generalization of the monomer dimer model). After providing a detailed literature review of the model, we show that not only such a model is able to identify the social mechanism that drives a particular integration process, but it also provides correct forecast. The research reported here proves that the proposed model of integration and its forecast framework are simple and effective tools to reduce uncertainties about how integration phenomena emerge and how they are likely to develop in response to increased migration levels in the future.
Resumo:
La ricerca presentata è un’ampia esplorazione delle possibili applicazioni di concetti, metodi e procedure della Fuzzy Logic all’Ingegneria dei Materiali. Tale nuovo approccio è giustificato dalla inadeguatezza dei risultati conseguiti con i soli metodi tradizionali riguardo alla reologia ed alla durabilità, all’utilizzo di dati di laboratorio nella progettazione e alla necessità di usare un linguaggio (informatizzabile) che consenta una valutazione congiunta degli aspetti tecnici, culturali, economici, paesaggistici della progettazione. – In particolare, la Fuzzy Logic permette di affrontare in modo razionale l’aleatorietà delle variabili e dei dati che, nel settore specifico dei materiali in opera nel costruito dei Beni Culturali, non possono essere trattati con i metodi statistici ordinari. – La scelta di concentrare l’attenzione su materiali e strutture in opera in siti archeologici discende non solo dall’interesse culturale ed economico connesso ai sempre più numerosi interventi in questo nuovo settore di pertinenza dell’Ingegneria dei Materiali, ma anche dal fatto che, in tali contesti, i termini della rappresentatività dei campionamenti, della complessità delle interazioni tra le variabili (fisiche e non), del tempo e quindi della durabilità sono evidenti ed esasperati. – Nell’ambito di questa ricerca si è anche condotto un ampio lavoro sperimentale di laboratorio per l’acquisizione dei dati utilizzati nelle procedure di modellazione fuzzy (fuzzy modeling). In tali situazioni si è operato secondo protocolli sperimentali standard: acquisizione della composizione mineralogica tramite diffrazione di raggi X (XRD), definizione della tessitura microstrutturale con osservazioni microscopiche (OM, SEM) e porosimetria tramite intrusione forzata di mercurio (MIP), determinazioni fisiche quali la velocità di propagazione degli ultrasuoni e rotoviscosimetria, misure tecnologiche di resistenza meccanica a compressione uniassiale, lavorabilità, ecc. – Nell’elaborazione dei dati e nella modellazione in termini fuzzy, la ricerca è articolata su tre livelli: a. quello dei singoli fenomeni chimico-fisici, di natura complessa, che non hanno trovato, a tutt’oggi, una trattazione soddisfacente e di generale consenso; le applicazioni riguardano la reologia delle dispersioni ad alto tenore di solido in acqua (calci, cementi, malte, calcestruzzi SCC), la correlazione della resistenza a compressione, la gelività dei materiali porosi ed alcuni aspetti della durabilità del calcestruzzo armato; b. quello della modellazione della durabilità dei materiali alla scala del sito archeologico; le applicazioni presentate riguardano i centri di cultura nuragica di Su Monte-Sorradile, GennaMaria-Villanovaforru e Is Paras-Isili; c. quello della scelta strategica costituita dalla selezione del miglior progetto di conservazione considerando gli aspetti connessi all’Ingegneria dei Materiali congiuntamente a quelli culturali, paesaggistici ed economici; le applicazioni hanno riguardato due importanti monumenti (Anfiteatro e Terme a Mare) del sito Romano di Nora-Pula.