5 resultados para Finite Elemente Methode (FEM)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a method for locating sources of volcanic tremor and applied it to a dataset recorded on Stromboli volcano before and after the onset of the February 27th 2007 effusive eruption. Volcanic tremor has attracted considerable attention by seismologists because of its potential value as a tool for forecasting eruptions and for better understanding the physical processes that occur inside active volcanoes. Commonly used methods to locate volcanic tremor sources are: 1) array techniques, 2) semblance based methods, 3) calculation of wave field amplitude. We have choosen the third approach, using a quantitative modeling of the seismic wavefield. For this purpose, we have calculated the Green Functions (GF) in the frequency domain with the Finite Element Method (FEM). We have used this method because it is well suited to solve elliptic problems, as the elastodynamics in the Fourier domain. The volcanic tremor source is located by determining the source function over a regular grid of points. The best fit point is choosen as the tremor source location. The source inversion is performed in the frequency domain, using only the wavefield amplitudes. We illustrate the method and its validation over a synthetic dataset. We show some preliminary results on the Stromboli dataset, evidencing temporal variations of the volcanic tremor sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the aerospace, automotive, printing, and sports industries, the development of hybrid Carbon Fiber Reinforced Polymer (CFRP)-metal components is becoming increasingly important. The coupling of metal with CFRP in axial symmetric components results in reduced production costs and increased mechanical properties such as bending, torsional stiffness, mass reduction, damping, and critical speed compared to the single material-built ones. In this thesis, thanks to a novel methodology involving a rubbery/viscoelastic interface layer, several hybrid aluminum-CFRP prototype tubes were produced. Besides, an innovative system for the cure of the CFRP part has been studied, analyzed, tested, and developed in the company that financed these research activities (Reglass SRL, Minerbio BO, Italy). The residual thermal stresses and strains have been investigated with numerical models based on the Finite Element Method (FEM) and compared with experimental tests. Thanks to numerical models, it was also possible to reduce residual thermal stresses by optimizing the lamination sequence of CFRP and determining the influence of the system parameters. A novel software and methodology for evaluating mechanical and damping properties of specimens and tubes made in CFRP were also developed. Moreover, to increase the component's damping properties, rubber nanofibers have been produced and interposed throughout the lamination of specimens. The promising results indicated that the nanofibrous mat could improve the material damping factor over 77% and be adopted in CFRP components with a negligible increment of weight or losing mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study is to apply a broad range of techniques to increase the knowledge of acoustic properties of Sprattus sprattus, Scomber colias and Trachurus mediterraneus in the Adriatic Sea. A novel study using tethered live fish but not involving hooks and anesthetic was tested on T. mediterraneus and S. colias through several ex situ experiments using a split-beam scientific echosounder operating at 38, 120, and 200 kHz. The mean TS was estimated for 29 live specimens, resulting in a conversion factor b20 value of -71.4 dB re 1 m2 and -71.6 dB re 1 m2 respectively which is ~3 dB lower than the current one in use in the Mediterranean Sea. Successively, two monospecific trawl hauls were analyzed through the application of in situ approach for the computation of TS values of S. sprattus which led to six b20 values for sprat (range, -68.8 dB re 1 m2 to -65.6 dB re 1 m2), all higher than the current known value of -71.7 dB re 1 m2. The high difference up to 4.2 dB compared to the current value translates in a significant decrease of absolute sprat biomass along the time series un to 20%. Finally, 149 specimens of the three species were collected for backscattering model application(i.e. Kirchhoff-ray mode model (KRM) and Finite Element Method (FEM)) from digital images of the fish body and swimbladder obtained from Computer Tomography (CT) and X-Ray scans. The values resulting from the application of KRM and FEM are in agreement with empirical results. In general terms the present work proposes the acoustic backscatter characterization of S. colias, S. sprattus and T. mediterraneus in the Mediterranean Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sound radiators based on forced vibrations of plates are becoming widely employed, mainly for active sound enhancement and noise cancelling systems, both in music and automotive environment. Active sound enhancement solutions based on electromagnetic shakers hence find increasing interest. Mostly diffused applications deal with active noise control (ANC) and active vibration control systems for improving the acoustic experience inside or outside the vehicle. This requires investigating vibrational and, consequently, vibro-acoustic characteristics of vehicles. Therefore, simulation and processing methods capable of reducing the calculation time and providing high-accuracy results, are strongly demanded. In this work, an ideal case study on rectangular plates in fully clamped conditions preceded a real case analysis on vehicle panels. The sound radiation generated by a vibrating flat or shallow surface can be calculated by means of Rayleigh’s integral. The analytical solution of the problem is here calculated implementing the equations in MATLAB. Then, the results are compared with a numerical model developed in COMSOL Multiphysics, employing Finite Element Method (FEM). A very good matching between analytical and numerical solutions is shown, thus the cross validation of the two methods is achieved. The shift to the real case study, on a McLaren super car, led to the development of a mixed analytical-numerical method. Optimum results were obtained with mini shakers excitement, showing good matching of the recorded SPL with the calculated one over all the selected frequency band. In addition, a set of directivity measurements of the hood were realized, to start studying the spatiality of sound, which is fundamental to active noise control systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground deformation provides valuable insights on subsurface processes with pattens reflecting the characteristics of the source at depth. In active volcanic sites displacements can be observed in unrest phases; therefore, a correct interpretation is essential to assess the hazard potential. Inverse modeling is employed to obtain quantitative estimates of parameters describing the source. However, despite the robustness of the available approaches, a realistic imaging of these reservoirs is still challenging. While analytical models return quick but simplistic results, assuming an isotropic and elastic crust, more sophisticated numerical models, accounting for the effects of topographic loads, crust inelasticity and structural discontinuities, require much higher computational effort and information about the crust rheology may be challenging to infer. All these approaches are based on a-priori source shape constraints, influencing the solution reliability. In this thesis, we present a new approach aimed at overcoming the aforementioned limitations, modeling sources free of a-priori shape constraints with the advantages of FEM simulations, but with a cost-efficient procedure. The source is represented as an assembly of elementary units, consisting in cubic elements of a regular FE mesh loaded with a unitary stress tensors. The surface response due to each of the six stress tensor components is computed and linearly combined to obtain the total displacement field. In this way, the source can assume potentially any shape. Our tests prove the equivalence of the deformation fields due to our assembly and that of corresponding cavities with uniform boundary pressure. Our ability to simulate pressurized cavities in a continuum domain permits to pre-compute surface responses, avoiding remeshing. A Bayesian trans-dimensional inversion algorithm implementing this strategy is developed. 3D Voronoi cells are used to sample the model domain, selecting the elementary units contributing to the source solution and those remaining inactive as part of the crust.